Key Laboratory of Microsystems and Microstructures Manufacturing, Micro/Nanotechnology Research Center, Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin, 150080, China.
Angew Chem Int Ed Engl. 2017 Oct 16;56(43):13517-13520. doi: 10.1002/anie.201708155. Epub 2017 Sep 25.
We report a dynamic self-organization of self-propelled peanut-shaped hematite motors from non-equilibrium driving forces where the propulsion can be triggered by blue light. They result in one-dimensional, active colloid ribbons with a positive phototactic characteristic. The motion of colloid motors is ascribed to the diffusion-osmotic flow in a chemical gradient by the photocatalytic decomposition of hydrogen peroxide fuel. We show that self-propelled peanut-shaped colloids readily form one-dimensional, slithering ribbon structures under the out-of-equilibrium collisions. This self-organization intrinsically results from the competition among the osmotically driven motion, the phoretic attraction and the inherent magnetic moments. The giant size number fluctuation in colloid ribbons is observed above a critical point 4.1 % of the surface density of colloid motors. Such phototactic colloid ribbons may provide a model system to understand the emergence of function in biological systems and have potential to construct bioinspired active materials based on different active building blocks.
我们报告了一种由非平衡驱动力引发的自推进花生形氧化铁马达的动态自组织,其中推进可以通过蓝光触发。它们产生具有正趋光性特征的一维活性胶体带。胶体马达的运动归因于过氧化氢燃料的光催化分解在化学梯度中的扩散渗透流。我们表明,自推进的花生形胶体在非平衡碰撞下很容易形成一维的、蜿蜒的带状结构。这种自组织本质上源于渗透驱动运动、泳移吸引力和固有磁矩之间的竞争。在胶体马达表面密度的 4.1%以上的临界点,观察到胶体带中巨大的尺寸数涨落。这种趋光胶体带可能为理解生物系统中功能的出现提供一个模型系统,并有可能基于不同的活性构建块构建仿生活性材料。