van Heerwaarden Belinda, Sgrò Carla M
School of Biological Sciences, Monash University, Clayton 3800, Victoria, Australia.
Evolution. 2017 Nov;71(11):2618-2633. doi: 10.1111/evo.13342. Epub 2017 Sep 20.
Phenotypic plasticity is thought to be an important mechanism for adapting to environmental heterogeneity. Nonetheless, the genetic basis of plasticity is still not well understood. In Drosophila melanogaster and D. simulans, body size and thermal stress resistance show clinal patterns along the east coast of Australia, and exhibit plastic responses to different developmental temperatures. The genetic basis of thermal plasticity, and whether the genetic effects underlying clinal variation in traits and their plasticity are similar, remains unknown. Here, we use line-cross analyses between a tropical and temperate population of Drosophila melanogaster and D. simulans developed at three constant temperatures (18°C, 25°C, and 29°C) to investigate the quantitative genetic basis of clinal divergence in mean thermal response (elevation) and plasticity (slope and curvature) for thermal stress and body size traits. Generally, the genetic effects underlying divergence in mean response and plasticity differed, suggesting that different genetic models may be required to understand the evolution of trait means and plasticity. Furthermore, our results suggest that nonadditive genetic effects, in particular epistasis, may commonly underlie plastic responses, indicating that current models that ignore epistasis may be insufficient to understand and predict evolutionary responses to environmental change.
表型可塑性被认为是适应环境异质性的一种重要机制。尽管如此,可塑性的遗传基础仍未得到很好的理解。在黑腹果蝇和拟果蝇中,体型和耐热性在澳大利亚东海岸呈现渐变模式,并对不同的发育温度表现出可塑性反应。热可塑性的遗传基础,以及性状渐变变异及其可塑性背后的遗传效应是否相似,仍然未知。在这里,我们利用黑腹果蝇和拟果蝇的热带和温带种群在三种恒定温度(18°C、25°C和29°C)下进行品系杂交分析,以研究热应激和体型性状的平均热反应(海拔)和可塑性(斜率和曲率)渐变分歧的数量遗传基础。一般来说,平均反应和可塑性分歧背后的遗传效应不同,这表明可能需要不同的遗传模型来理解性状均值和可塑性的进化。此外,我们的结果表明,非加性遗传效应,特别是上位性,可能通常是可塑性反应的基础,这表明当前忽略上位性的模型可能不足以理解和预测对环境变化的进化反应。