Jonathan M P, Muñoz-Sevilla N P, Góngora-Gómez Andrés Martin, Luna Varela Raquel Gabriela, Sujitha S B, Escobedo-Urías D C, Rodríguez-Espinosa P F, Campos Villegas Lorena Elizabeth
Centro Interdisciplinario de Investigaciones y Estudios Sobre Medio Ambiente y Desarrollo (CIIEMAD), Instituto Politécnico Nacional (IPN), Calle 30 de Junio de 1520, Barrio La Laguna Ticomán, Del. Gustavo A. Madero, C.P.07340, Ciudad de México (CDMX), Mexico.
Centro Interdisciplinario de Investigaciones y Estudios Sobre Medio Ambiente y Desarrollo (CIIEMAD), Instituto Politécnico Nacional (IPN), Calle 30 de Junio de 1520, Barrio La Laguna Ticomán, Del. Gustavo A. Madero, C.P.07340, Ciudad de México (CDMX), Mexico.
Chemosphere. 2017 Nov;187:311-319. doi: 10.1016/j.chemosphere.2017.08.098. Epub 2017 Aug 22.
The aim of the study was to evaluate the bioavailability of trace metals (Chromium, Copper, Nickel, Lead, Zinc, Cadmium, Arsenic, and Mercury) in the commercially consumed Crassostrea gigas oysters collected over a 12-month growth period (2011-12) from an experimental cultivation farm in La Pitahaya, Sinaloa State, Mexico. Sediment and water samples were also collected from four different zones adjacent to the cultivation area to identify the concentration patterns of metals. The results revealed that sewage disposals, fertilizers used for agricultural practices and shrimp culture are the major sources for the enrichment of certain toxic metals. The metal concentrations in oysters presented a decreasing order of abundance (all values in mg Kg): Zn (278.91 ± 93.03) > Cu (63.13 ± 31.72) > Cr (22.29 ± 30.23) > Cd (14.54 ± 4.28) > Ni (9.41 ± 11.33) > Pb (2.22 ± 1.33) > As (0.58 ± 0.91) > Hg (0.04 ± 0.06). Bioconcentration Factor (BCF) and Biota Sediment Accumulation Factor (BSAF) exhibited that C. gigas in the region are strong accumulators for Zn and Cd respectively. Thus, the present study proves to fulfill the gap in understanding the rate of bioaccumulation of metals in C. gigas which is regarded as the most sought after oyster species globally.
本研究的目的是评估在2011 - 12年为期12个月的生长周期内,从墨西哥锡那罗亚州拉皮塔亚的一个实验养殖场采集的商业消费的巨蛎中微量金属(铬、铜、镍、铅、锌、镉、砷和汞)的生物利用度。还从养殖区相邻的四个不同区域采集了沉积物和水样,以确定金属的浓度模式。结果表明,污水处理、农业实践中使用的肥料和对虾养殖是某些有毒金属富集的主要来源。牡蛎中的金属浓度呈现出丰度递减顺序(所有值以mg Kg计):锌(278.91 ± 93.03)> 铜(63.13 ± 31.72)> 铬(22.29 ± 30.23)> 镉(14.54 ± 4.28)> 镍(9.41 ± 11.33)> 铅(2.22 ± 1.33)> 砷(0.58 ± 0.91)> 汞(0.04 ± 0.06)。生物富集系数(BCF)和生物群沉积物积累系数(BSAF)表明,该地区的巨蛎分别是锌和镉的强积累者。因此,本研究填补了在了解全球最受欢迎的牡蛎品种巨蛎中金属生物积累速率方面的空白。