IEEE Trans Image Process. 2017 Dec;26(12):5632-5644. doi: 10.1109/TIP.2017.2745200. Epub 2017 Aug 25.
The nonsmooth and nonconvex regularization has many applications in imaging science and machine learning research due to its excellent recovery performance. A proximal iteratively reweighted nuclear norm algorithm has been proposed for the nonsmooth and nonconvex matrix minimizations. In this paper, we aim to investigate the convergence of the algorithm. With the Kurdyka-Łojasiewicz property, we prove the algorithm globally converges to a critical point of the objective function. The numerical results presented in this paper coincide with our theoretical findings.
由于其出色的恢复性能,非光滑非凸正则化在成像科学和机器学习研究中有着广泛的应用。针对非光滑非凸矩阵最小化问题,提出了一种基于近端迭代重加权核范数的算法。本文旨在研究该算法的收敛性。利用 Kurdyka-Łojasiewicz 性质,证明了算法全局收敛到目标函数的临界点。本文给出的数值结果与我们的理论发现相符。