Suppr超能文献

GeRNet:一种基因调控网络工具。

GeRNet: a gene regulatory network tool.

作者信息

Dussaut J S, Gallo C A, Cravero F, Martínez M J, Carballido J A, Ponzoni I

机构信息

Instituto de Ciencias e Ingeniería de la Computación, Universidad Nacional del Sur, CONICET, Bahía Blanca, Argentina.

Planta Piloto de Ingeniería Química, Universidad Nacional del Sur, CONICET, Bahía Blanca, Argentina.

出版信息

Biosystems. 2017 Dec;162:1-11. doi: 10.1016/j.biosystems.2017.08.006. Epub 2017 Aug 30.

Abstract

Gene regulatory networks (GRNs) are crucial in every process of life since they govern the majority of the molecular processes. Therefore, the task of assembling these networks is highly important. In particular, the so called model-free approaches have an advantage modeling the complexities of dynamic molecular networks, since most of the gene networks are hard to be mapped with accuracy by any other mathematical model. A highly abstract model-free approach, called rule-based approach, offers several advantages performing data-driven analysis; such as the requirement of the least amount of data. They also have an important ability to perform inferences: its simplicity allows the inference of large size models with a higher speed of analysis. However, regarding these techniques, the reconstruction of the relational structure of the network is partial, hence incomplete, for an effective biological analysis. This situation motivated us to explore the possibility of hybridizing with other approaches, such as biclustering techniques. This led to incorporate a biclustering tool that finds new relations between the nodes of the GRN. In this work we present a new software, called GeRNeT that integrates the algorithms of GRNCOP2 and BiHEA along a set of tools for interactive visualization, statistical analysis and ontological enrichment of the resulting GRNs. In this regard, results associated with Alzheimer disease datasets are presented that show the usefulness of integrating both bioinformatics tools.

摘要

基因调控网络(GRNs)在生命的每个过程中都至关重要,因为它们掌控着大多数分子过程。因此,组装这些网络的任务极为重要。特别是,所谓的无模型方法在对动态分子网络的复杂性进行建模方面具有优势,因为大多数基因网络很难被任何其他数学模型精确映射。一种高度抽象的无模型方法,即基于规则的方法,在进行数据驱动分析时具有多个优点;例如所需数据量最少。它们还具有进行推理的重要能力:其简单性使得能够以更高的分析速度推断出大型模型。然而,对于这些技术而言,网络关系结构的重建是局部的,因此对于有效的生物学分析来说是不完整的。这种情况促使我们探索与其他方法(如双聚类技术)进行融合的可能性。这导致纳入了一个双聚类工具,该工具可在基因调控网络的节点之间发现新的关系。在这项工作中,我们展示了一个名为GeRNeT的新软件,它整合了GRNCOP2和BiHEA的算法以及一组用于交互式可视化、统计分析和对所得基因调控网络进行本体富集的工具。在这方面,展示了与阿尔茨海默病数据集相关的结果,这些结果表明整合这两种生物信息学工具是有用的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验