Suppr超能文献

通过整合转录因子与DNA的相互作用和表达数据构建基因调控网络的逻辑模型:一种基于熵的方法。

Constructing logical models of gene regulatory networks by integrating transcription factor-DNA interactions with expression data: an entropy-based approach.

作者信息

Karlebach Guy, Shamir Ron

机构信息

Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel.

出版信息

J Comput Biol. 2012 Jan;19(1):30-41. doi: 10.1089/cmb.2011.0100.

Abstract

Models of gene regulatory networks (GRNs) attempt to explain the complex processes that determine cells' behavior, such as differentiation, metabolism, and the cell cycle. The advent of high-throughput data generation technologies has allowed researchers to fit theoretical models to experimental data on gene-expression profiles. GRNs are often represented using logical models. These models require that real-valued measurements be converted to discrete levels, such as on/off, but the discretization often introduces inconsistencies into the data. Dimitrova et al. posed the problem of efficiently finding a parsimonious resolution of the introduced inconsistencies. We show that reconstruction of a logical GRN that minimizes the errors is NP-complete, so that an efficient exact algorithm for the problem is not likely to exist. We present a probabilistic formulation of the problem that circumvents discretization of expression data. We phrase the problem of error reduction as a minimum entropy problem, develop a heuristic algorithm for it, and evaluate its performance on mouse embryonic stem cell data. The constructed model displays high consistency with prior biological knowledge. Despite the oversimplification of a discrete model, we show that it is superior to raw experimental measurements and demonstrates a highly significant level of identical regulatory logic among co-regulated genes. A software implementing the method is freely available at: http://acgt.cs.tau.ac.il/modent.

摘要

基因调控网络(GRN)模型试图解释决定细胞行为的复杂过程,如分化、代谢和细胞周期。高通量数据生成技术的出现使研究人员能够将理论模型与基因表达谱的实验数据相拟合。GRN通常用逻辑模型表示。这些模型要求将实值测量转换为离散水平,如开/关,但离散化往往会给数据引入不一致性。迪米特罗娃等人提出了有效找到所引入不一致性的简约解决方案的问题。我们表明,最小化误差的逻辑GRN重建是NP完全问题,因此不太可能存在针对该问题的高效精确算法。我们提出了该问题的概率公式,避免了表达数据的离散化。我们将误差减少问题表述为最小熵问题,为其开发了一种启发式算法,并在小鼠胚胎干细胞数据上评估了其性能。构建的模型与先前的生物学知识高度一致。尽管离散模型过于简化,但我们表明它优于原始实验测量,并证明了共同调控基因之间高度显著的相同调控逻辑水平。实现该方法的软件可在以下网址免费获取:http://acgt.cs.tau.ac.il/modent

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验