Suppr超能文献

靶向纤溶酶原激活物抑制剂-1 治疗四环素诱导的兔胸膜损伤。

Targeting plasminogen activator inhibitor-1 in tetracycline-induced pleural injury in rabbits.

机构信息

Texas Lung Injury Institute, The University of Texas Health Science Center at Tyler , Tyler, Texas.

Department of Biology, The University of Texas at Tyler, Tyler, Texas.

出版信息

Am J Physiol Lung Cell Mol Physiol. 2018 Jan 1;314(1):L54-L68. doi: 10.1152/ajplung.00579.2016. Epub 2017 Aug 31.

Abstract

Elevated active plasminogen activator inhibitor-1 (PAI-1) has an adverse effect on the outcomes of intrapleural fibrinolytic therapy (IPFT) in tetracycline-induced pleural injury in rabbits. To enhance IPFT with prourokinase (scuPA), two mechanistically distinct approaches to targeting PAI-1 were tested: slowing its reaction with urokinase (uPA) and monoclonal antibody (mAb)-mediated PAI-1 inactivation. Removing positively charged residues at the "PAI-1 docking site" (RHRGGS→AAAAAA) of uPA results in a 60-fold decrease in the rate of inhibition by PAI-1. Mutant prourokinase (0.0625-0.5 mg/kg; n = 12) showed efficacy comparable to wild-type scuPA and did not change IPFT outcomes ( P > 0.05). Notably, the rate of PAI-1-independent intrapleural inactivation of mutant uPA was 2 times higher ( P < 0.05) than that of the wild-type enzyme. Trapping PAI-1 in a "molecular sandwich"-type complex with catalytically inactive two-chain urokinase with SerAla substitution (S195A-tcuPA; 0.1 and 0.5 mg/kg) did not improve the efficacy of IPFT with scuPA (0.0625-0.5 mg/kg; n = 11). IPFT failed in the presence of MA-56A7C10 (0.5 mg/kg; n = 2), which forms a stable intrapleural molecular sandwich complex, allowing active PAI-1 to accumulate by blocking its transition to a latent form. In contrast, inactivation of PAI-1 by accelerating the active-to-latent transition mediated by mAb MA-33B8 (0.5 mg/kg; n = 2) improved the efficacy of IPFT with scuPA (0.25 mg/kg). Thus, under conditions of slow (4-8 h) fibrinolysis in tetracycline-induced pleural injury in rabbits, only the inactivation of PAI-1, but not a decrease in the rate of its reaction with uPA, enhances IPFT. Therefore the rate of fibrinolysis, which varies in different pathologic states, could affect the selection of PAI-1 inhibitors to enhance fibrinolytic therapy.

摘要

在四环素诱导的兔胸膜损伤中,升高的活性纤溶酶原激活物抑制剂-1(PAI-1)对胸腔内纤维蛋白溶解治疗(IPFT)的结果有不良影响。为了增强尿激酶原(scuPA)的 IPFT,测试了两种针对 PAI-1 的机制不同的方法:减缓其与尿激酶(uPA)的反应速度和单克隆抗体(mAb)介导的 PAI-1 失活。在 uPA 的“PAI-1 结合位点”(RHRGGS→AAAAAA)上去除正电荷残基会导致 PAI-1 的抑制速率降低 60 倍。突变尿激酶原(0.0625-0.5mg/kg;n=12)显示出与野生型 scuPA 相当的疗效,并且不改变 IPFT 结果(P>0.05)。值得注意的是,突变 uPA 的 PAI-1 非依赖性胸腔内失活速率比野生型酶高 2 倍(P<0.05)。用催化失活的双链尿激酶与 SerAla 取代(S195A-tcuPA;0.1 和 0.5mg/kg)将 PAI-1 捕获在“分子三明治”型复合物中,并没有提高 scuPA 的 IPFT 疗效(0.0625-0.5mg/kg;n=11)。在 MA-56A7C10(0.5mg/kg;n=2)存在的情况下,IPFT 失败,MA-56A7C10 形成稳定的胸腔内分子三明治复合物,通过阻止其转化为潜伏形式来允许活性 PAI-1 积累。相比之下,通过 mAb MA-33B8 介导的加速活性到潜伏过渡来失活 PAI-1(0.5mg/kg;n=2)改善了 scuPA 的 IPFT 疗效(0.25mg/kg)。因此,在四环素诱导的兔胸膜损伤中,纤溶缓慢(4-8 小时)的情况下,只有 PAI-1 的失活,而不是其与 uPA 反应速度的降低,才能增强 IPFT。因此,在不同的病理状态下,纤溶速度的变化可能会影响选择 PAI-1 抑制剂来增强纤维蛋白溶解治疗。

相似文献

1
Targeting plasminogen activator inhibitor-1 in tetracycline-induced pleural injury in rabbits.
Am J Physiol Lung Cell Mol Physiol. 2018 Jan 1;314(1):L54-L68. doi: 10.1152/ajplung.00579.2016. Epub 2017 Aug 31.
3
Active α-macroglobulin is a reservoir for urokinase after fibrinolytic therapy in rabbits with tetracycline-induced pleural injury and in human pleural fluids.
Am J Physiol Lung Cell Mol Physiol. 2013 Nov 15;305(10):L682-92. doi: 10.1152/ajplung.00102.2013. Epub 2013 Aug 30.
4
Regulation of intrapleural fibrinolysis by urokinase-alpha-macroglobulin complexes in tetracycline-induced pleural injury in rabbits.
Am J Physiol Lung Cell Mol Physiol. 2009 Oct;297(4):L568-77. doi: 10.1152/ajplung.00066.2009. Epub 2009 Aug 7.
5
The time course of resolution of adhesions during fibrinolytic therapy in tetracycline-induced pleural injury in rabbits.
Am J Physiol Lung Cell Mol Physiol. 2015 Sep 15;309(6):L562-72. doi: 10.1152/ajplung.00136.2015. Epub 2015 Jul 10.
6
Dose dependency of outcomes of intrapleural fibrinolytic therapy in new rabbit empyema models.
Am J Physiol Lung Cell Mol Physiol. 2016 Aug 1;311(2):L389-99. doi: 10.1152/ajplung.00171.2016. Epub 2016 Jun 24.
7
Intrapleural adenoviral delivery of human plasminogen activator inhibitor-1 exacerbates tetracycline-induced pleural injury in rabbits.
Am J Respir Cell Mol Biol. 2013 Jan;48(1):44-52. doi: 10.1165/rcmb.2012-0183OC. Epub 2012 Sep 20.
8
Thrombin-thrombomodulin inhibits prourokinase-mediated pleural mesothelial cell-dependent fibrinolysis.
Thromb Res. 2007;120(5):715-25. doi: 10.1016/j.thromres.2006.12.001. Epub 2007 Feb 2.

引用本文的文献

1
Intrapleural Fibrinolytic Interventions for Retained Hemothoraces in Rabbits.
Int J Mol Sci. 2024 Aug 12;25(16):8778. doi: 10.3390/ijms25168778.
2
A Novel Rabbit Model of Retained Hemothorax with Pleural Organization.
Int J Mol Sci. 2023 Dec 29;25(1):470. doi: 10.3390/ijms25010470.
4
PAI-1 Drives Septation and Clinical Outcomes in Pleural Infection.
Am J Respir Crit Care Med. 2023 Mar 15;207(6):653-655. doi: 10.1164/rccm.202210-1925ED.
5
From Bedside to the Bench-A Call for Novel Approaches to Prognostic Evaluation and Treatment of Empyema.
Front Pharmacol. 2022 Jan 20;12:806393. doi: 10.3389/fphar.2021.806393. eCollection 2021.
7
Targeting PAI-1 in Cardiovascular Disease: Structural Insights Into PAI-1 Functionality and Inhibition.
Front Cardiovasc Med. 2020 Dec 22;7:622473. doi: 10.3389/fcvm.2020.622473. eCollection 2020.
8
Management of Pleural Infection.
Pulm Ther. 2021 Jun;7(1):59-74. doi: 10.1007/s41030-020-00140-7. Epub 2020 Dec 9.
10
suPAR Surprises as a Biomarker of Invasive Outcomes in Pleural Infection.
Am J Respir Crit Care Med. 2020 Jun 15;201(12):1470-1472. doi: 10.1164/rccm.202003-0525ED.

本文引用的文献

1
Dose dependency of outcomes of intrapleural fibrinolytic therapy in new rabbit empyema models.
Am J Physiol Lung Cell Mol Physiol. 2016 Aug 1;311(2):L389-99. doi: 10.1152/ajplung.00171.2016. Epub 2016 Jun 24.
2
Organizing empyema induced in mice by Streptococcus pneumoniae: effects of plasminogen activator inhibitor-1 deficiency.
Clin Transl Med. 2016 Dec;5(1):17. doi: 10.1186/s40169-016-0097-2. Epub 2016 May 13.
3
A specific plasminogen activator inhibitor-1 antagonist derived from inactivated urokinase.
J Cell Mol Med. 2016 Oct;20(10):1851-60. doi: 10.1111/jcmm.12875. Epub 2016 May 20.
4
The time course of resolution of adhesions during fibrinolytic therapy in tetracycline-induced pleural injury in rabbits.
Am J Physiol Lung Cell Mol Physiol. 2015 Sep 15;309(6):L562-72. doi: 10.1152/ajplung.00136.2015. Epub 2015 Jul 10.
5
Two sequential tPA/DNase courses for noncommunicating loculated collections in pleural infection.
Respirol Case Rep. 2014 Jun;2(2):87-9. doi: 10.1002/rcr2.58. Epub 2014 May 4.
6
Management of parapneumonic effusions and empyema.
Semin Respir Crit Care Med. 2014 Dec;35(6):715-22. doi: 10.1055/s-0034-1395503. Epub 2014 Dec 2.
7
Airway tissue plasminogen activator prevents acute mortality due to lethal sulfur mustard inhalation.
Toxicol Sci. 2015 Jan;143(1):178-84. doi: 10.1093/toxsci/kfu225. Epub 2014 Oct 20.
10
Novel or expanding current targets in fibrinolysis.
Drug Discov Today. 2014 Sep;19(9):1476-82. doi: 10.1016/j.drudis.2014.05.025. Epub 2014 Jun 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验