Falabella Micol, Sun Linqing, Barr Justin, Pena Andressa Z, Kershaw Erin E, Gingras Sebastien, Goncharova Elena A, Kaufman Brett A
University of Pittsburgh School of Medicine, Department of Medicine, Division of Cardiology, Center for Metabolism and Mitochondrial Medicine and Vascular Medicine Institute, Pennsylvania 15261.
Integrated DNA Technologies, Coralville, Iowa 52241.
G3 (Bethesda). 2017 Oct 5;7(10):3533-3542. doi: 10.1534/g3.117.300123.
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-based technology is currently the most flexible means to create targeted mutations by recombination or indel mutations by nonhomologous end joining. During mouse transgenesis, recombinant and indel alleles are often pursued simultaneously. Multiple alleles can be formed in each animal to create significant genetic complexity that complicates the CRISPR-Cas9 approach and analysis. Currently, there are no rapid methods to measure the extent of on-site editing with broad mutation sensitivity. In this study, we demonstrate the allelic diversity arising from targeted CRISPR editing in founder mice. Using this DNA sample collection, we validated specific quantitative and digital PCR methods (qPCR and dPCR, respectively) for measuring the frequency of on-target editing in founder mice. We found that locked nucleic acid (LNA) probes combined with an internal reference probe (Drop-Off Assay) provide accurate measurements of editing rates. The Drop-Off LNA Assay also detected on-target CRISPR-Cas9 gene editing in blastocysts with a sensitivity comparable to PCR-clone sequencing. Lastly, we demonstrate that the allele-specific LNA probes used in qPCR competitor assays can accurately detect recombinant mutations in founder mice. In summary, we show that LNA-based qPCR and dPCR assays provide a rapid method for quantifying the extent of on-target genome editing , testing RNA guides, and detecting recombinant mutations.
成簇规律间隔短回文重复序列(CRISPR)-CRISPR相关蛋白9(Cas9)技术是目前通过重组产生靶向突变或通过非同源末端连接产生插入缺失突变最灵活的方法。在小鼠转基因过程中,重组和插入缺失等位基因通常同时被追踪。每只动物中可形成多个等位基因,从而产生显著的遗传复杂性,使CRISPR-Cas9方法和分析变得复杂。目前,尚无快速方法可在广泛的突变敏感性下测量位点编辑的程度。在本研究中,我们展示了在奠基小鼠中靶向CRISPR编辑产生的等位基因多样性。利用这种DNA样本收集,我们验证了用于测量奠基小鼠中靶向编辑频率的特定定量和数字PCR方法(分别为qPCR和dPCR)。我们发现,锁核酸(LNA)探针与内部参考探针结合(Drop-Off检测法)可提供编辑率的准确测量。Drop-Off LNA检测法还在囊胚中检测到靶向CRISPR-Cas9基因编辑,其灵敏度与PCR克隆测序相当。最后,我们证明qPCR竞争分析中使用的等位基因特异性LNA探针可准确检测奠基小鼠中的重组突变。总之,我们表明基于LNA的qPCR和dPCR分析提供了一种快速方法,用于量化靶向基因组编辑的程度、测试RNA引导序列以及检测重组突变。