Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore.
Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore.
Sci Adv. 2016 Jun 24;2(6):e1600295. doi: 10.1126/sciadv.1600295. eCollection 2016 Jun.
Weyl semimetals are of great interest because they provide the first realization of the Weyl fermion, exhibit exotic quantum anomalies, and host Fermi arc surface states. The separation between Weyl nodes of opposite chirality gives a measure of the robustness of the Weyl semimetal state. To exploit the novel phenomena that arise from Weyl fermions in applications, it is crucially important to find robust separated Weyl nodes. We propose a methodology to design robust Weyl semimetals with well-separated Weyl nodes. Using this methodology as a guideline, we search among the material parameter space and identify by far the most robust and ideal Weyl semimetal candidate in the single-crystalline compound tantalum sulfide (TaS) with new and novel properties beyond TaAs. Crucially, our results show that TaS has the largest -space separation between Weyl nodes among known Weyl semimetal candidates, which is about twice larger than the measured value in TaAs and 20 times larger than the predicted value in WTe. Moreover, all Weyl nodes in TaS are of type II. Therefore, TaS is a type II Weyl semimetal. Furthermore, we predict that increasing the lattice by <4% can annihilate all Weyl nodes, driving a novel topological metal-to-insulator transition from a Weyl semimetal state to a topological insulator state. The robust type II Weyl semimetal state and the topological metal-to-insulator transition in TaS are potentially useful in device applications. Our methodology can be generally applied to search for new Weyl semimetals.
外尔半金属引起了人们的极大兴趣,因为它们首次实现了外尔费米子,表现出奇异的量子反常,并存在费米弧表面态。相反手性的外尔节点之间的分离提供了外尔半金属态稳健性的度量。为了在外尔费米子的应用中利用出现的新现象,找到稳健的分离外尔节点至关重要。我们提出了一种设计具有良好分离外尔节点的稳健外尔半金属的方法。使用这种方法作为指导,我们在材料参数空间中进行搜索,并确定迄今为止在单晶化合物二硫化钽(TaS)中发现的最稳健和理想的外尔半金属候选物,其具有超越 TaAs 的新和新颖性质。至关重要的是,我们的结果表明 TaS 在已知的外尔半金属候选物中外尔节点之间的最大 - 空间分离,这大约是 TaAs 中测量值的两倍,是 WTe 中预测值的 20 倍。此外,TaS 中的所有外尔节点都是 II 型的。因此,TaS 是一种 II 型外尔半金属。此外,我们预测增加<4%的晶格可以消除所有外尔节点,从而从外尔半金属态驱动到拓扑绝缘体态的新型拓扑金属-绝缘体转变。TaS 中的稳健 II 型外尔半金属态和拓扑金属-绝缘体转变在器件应用中可能是有用的。我们的方法可以一般地应用于寻找新的外尔半金属。