UCLA Neurocardiology Research Center of Excellence and UCLA Cardiac Arrhythmia Center, Los Angeles, Los Angeles, CA, USA.
Biomedical Sciences, East Tennessee State University, Johnson City, TN, USA.
J Physiol. 2017 Nov 15;595(22):6887-6903. doi: 10.1113/JP274678. Epub 2017 Sep 30.
KEY POINTS: The evoked cardiac response to bipolar cervical vagus nerve stimulation (VNS) reflects a dynamic interaction between afferent mediated decreases in central parasympathetic drive and suppressive effects evoked by direct stimulation of parasympathetic efferent axons to the heart. The neural fulcrum is defined as the operating point, based on frequency-amplitude-pulse width, where a null heart rate response is reproducibly evoked during the on-phase of VNS. Cardiac control, based on the principal of the neural fulcrum, can be elicited from either vagus. Beta-receptor blockade does not alter the tachycardia phase to low intensity VNS, but can increase the bradycardia to higher intensity VNS. While muscarinic cholinergic blockade prevented the VNS-induced bradycardia, clinically relevant doses of ACE inhibitors, beta-blockade and the funny channel blocker ivabradine did not alter the VNS chronotropic response. While there are qualitative differences in VNS heart control between awake and anaesthetized states, the physiological expression of the neural fulcrum is maintained. ABSTRACT: Vagus nerve stimulation (VNS) is an emerging therapy for treatment of chronic heart failure and remains a standard of therapy in patients with treatment-resistant epilepsy. The objective of this work was to characterize heart rate (HR) responses (HRRs) during the active phase of chronic VNS over a wide range of stimulation parameters in order to define optimal protocols for bidirectional bioelectronic control of the heart. In normal canines, bipolar electrodes were chronically implanted on the cervical vagosympathetic trunk bilaterally with anode cephalad to cathode (n = 8, 'cardiac' configuration) or with electrode positions reversed (n = 8, 'epilepsy' configuration). In awake state, HRRs were determined for each combination of pulse frequency (2-20 Hz), intensity (0-3.5 mA) and pulse widths (130-750 μs) over 14 months. At low intensities and higher frequency VNS, HR increased during the VNS active phase owing to afferent modulation of parasympathetic central drive. When functional effects of afferent and efferent fibre activation were balanced, a null HRR was evoked (defined as 'neural fulcrum') during which HRR ≈ 0. As intensity increased further, HR was reduced during the active phase of VNS. While qualitatively similar, VNS delivered in the epilepsy configuration resulted in more pronounced HR acceleration and reduced HR deceleration during VNS. At termination, under anaesthesia, transection of the vagi rostral to the stimulation site eliminated the augmenting response to VNS and enhanced the parasympathetic efferent-mediated suppressing effect on electrical and mechanical function of the heart. In conclusion, VNS activates central then peripheral aspects of the cardiac nervous system. VNS control over cardiac function is maintained during chronic therapy.
要点:双极颈迷走神经刺激(VNS)诱发的心脏反应反映了传入介导的中枢副交感神经驱动减少与直接刺激心脏副交感传出轴的抑制作用之间的动态相互作用。神经支点的定义是操作点,基于频率-幅度-脉冲宽度,在 VNS 的 ON 相期间可重现地诱发零心率反应。基于神经支点原理的心脏控制可以从迷走神经中的任何一个引出。β-受体阻滞剂不会改变低强度 VNS 的心动过速期,但可以增加高强度 VNS 的心动过缓期。虽然毒蕈碱型胆碱能阻断剂阻止了 VNS 引起的心动过缓,但临床相关剂量的 ACE 抑制剂、β-受体阻滞剂和有趣的通道阻滞剂伊伐布雷定并没有改变 VNS 的变时反应。虽然在清醒和麻醉状态下 VNS 心脏控制存在定性差异,但神经支点的生理表达得以维持。
摘要:迷走神经刺激(VNS)是治疗慢性心力衰竭的一种新兴疗法,并且仍然是治疗耐药性癫痫患者的标准疗法。本研究的目的是在广泛的刺激参数范围内描述慢性 VNS 主动相期间的心率(HR)反应(HRR),以确定双向生物电子心脏控制的最佳方案。在正常犬中,双侧将双极电极永久性植入颈迷走交感干上,阳极位于阴极上方(n=8,“心脏”配置)或电极位置颠倒(n=8,“癫痫”配置)。在清醒状态下,对于每个脉冲频率(2-20 Hz)、强度(0-3.5 mA)和脉冲宽度(130-750 μs)的组合,在 14 个月内确定 HRR。在低强度和更高频率的 VNS 下,由于传入对副交感中枢驱动的调制,HR 在 VNS 主动相期间增加。当传入和传出纤维激活的功能效应平衡时,在 VNS 主动相期间会诱发零 HRR(定义为“神经支点”),在此期间 HRR≈0。随着强度的进一步增加,HR 在 VNS 主动相期间减少。虽然定性上相似,但在癫痫配置中传递的 VNS 导致 HR 加速更明显,而 VNS 期间 HR 减速减少。在终止时,在麻醉下,刺激部位的迷走神经切断术消除了对 VNS 的增强反应,并增强了对心脏电和机械功能的副交感传出介导的抑制作用。总之,VNS 激活了心脏神经系统的中枢和外周部分。在慢性治疗期间,VNS 对心脏功能的控制得以维持。
Am J Physiol Heart Circ Physiol. 2015-11-15
Am J Physiol Heart Circ Physiol. 2015-11
Am J Physiol Heart Circ Physiol. 2019-7-12
Am J Physiol Heart Circ Physiol. 2021-6-1
Am J Physiol Heart Circ Physiol. 2017-8-1
Sci Rep. 2020-6-8
Neurogastroenterol Motil. 2020-7
Annu Int Conf IEEE Eng Med Biol Soc. 2018-7
Sci Rep. 2025-7-30
Biomedicines. 2025-7-21
Curr Opin Neurobiol. 2025-8
Bioelectricity. 2025-3-18
Curr Opin Biomed Eng. 2025-3
Prog Cardiovasc Dis. 2024-11-30
Proc Am Control Conf. 2024-7
Bioelectron Med. 2024-9-13
Compr Physiol. 2016-9-15
Am J Physiol Heart Circ Physiol. 2016-11-1
J Am Coll Cardiol. 2016-4-4