Suppr超能文献

配体质子化在五甲基环戊二烯基铑催化剂析氢反应中的作用

Role of Ligand Protonation in Dihydrogen Evolution from a Pentamethylcyclopentadienyl Rhodium Catalyst.

作者信息

Johnson Samantha I, Gray Harry B, Blakemore James D, Goddard William A

机构信息

Center for Chemical Innovation in Solar Fuels, California Institute of Technology , Pasadena, California 91125, United States.

Materials Research Center, California Institute of Technology , Pasadena, California 91125, United States.

出版信息

Inorg Chem. 2017 Sep 18;56(18):11375-11386. doi: 10.1021/acs.inorgchem.7b01698. Epub 2017 Sep 1.

Abstract

Recent work has shown that CpRh(bpy) [Cp = pentamethylcyclopentadienyl, bpy = 2,2'- bipyridine] undergoes endo protonation at the [Cp*] ligand in the presence of weak acid (EtNH; pK = 18.8 in MeCN). Upon exposure to stronger acid (e.g., DMFH; pK = 6.1), hydrogen is evolved with unity yield. Here, we study the mechanisms by which this catalyst evolves dihydrogen using density functional theory (M06) with polarizable continuum solvation. The calculations show that the complex can be protonated by weak acid first at the metal center with a barrier of 3.2 kcal/mol; this proton then migrates to the ring to form the detected intermediate, a rhodium(I) compound bearing endo η-CpH. Stronger acid is required to evolve hydrogen, which calculations show happens via a concerted mechanism. The acid approaches and protonates the metal, while the second proton simultaneously migrates from the ring with a barrier of ∼12 kcal/mol. Under strongly acidic conditions, we find that hydrogen evolution can proceed through a traditional metal-hydride species; protonation of the initial hydride to form an H-H bond occurs before migration of the hydride (in the form of a proton) to the [Cp] ring (i.e., H-H bond formation is faster than hydride-proton tautomerization). This work demonstrates the role of acid strength in accessing different mechanisms of hydrogen evolution. Calculations also predict that modification of the bpy ligand by a variety of functional groups does not affect the preference for [Cp*] protonation, although the driving force for protonation changes. However, we predict that exchange of bpy for a bidentate phosphine ligand will stabilize a rhodium(III) hydride, reversing the preference for bound [Cp*H] found in all computed bpy derivatives and offering an appealing alternative ligand platform for future experimental and computational mechanistic studies of H evolution.

摘要

最近的研究表明,CpRh(bpy) [Cp = 五甲基环戊二烯基,bpy = 2,2'-联吡啶] 在弱酸(EtNH;在乙腈中的pK = 18.8)存在下,[Cp*]配体发生内质子化。暴露于更强的酸(例如,DMFH;pK = 6.1)时,氢气以单位产率释放。在此,我们使用具有极化连续介质溶剂化的密度泛函理论(M06)研究该催化剂释放氢气的机理。计算表明,该配合物首先可以在金属中心被弱酸质子化,势垒为3.2 kcal/mol;然后该质子迁移到环上形成检测到的中间体,即带有内η-CpH的铑(I)化合物。释放氢气需要更强的酸,计算表明这是通过协同机理发生的。酸接近并使金属质子化,而第二个质子同时从环迁移,势垒约为12 kcal/mol。在强酸性条件下,我们发现氢气释放可以通过传统的金属氢化物物种进行;初始氢化物的质子化形成H-H键发生在氢化物(以质子形式)迁移到[Cp]环之前(即,H-H键形成比氢化物-质子互变异构更快)。这项工作证明了酸强度在获得不同氢气释放机理中的作用。计算还预测,用各种官能团修饰bpy配体不会影响对[Cp*]质子化的偏好,尽管质子化的驱动力会发生变化。然而,我们预测用双齿膦配体取代bpy将稳定铑(III)氢化物,逆转在所有计算的bpy衍生物中发现的对结合[Cp*H]的偏好,并为未来氢气释放的实验和计算机理研究提供一个有吸引力的替代配体平台。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验