Hulva Jan, Jakub Zdeněk, Novotny Zbynek, Johansson Niclas, Knudsen Jan, Schnadt Joachim, Schmid Michael, Diebold Ulrike, Parkinson Gareth S
Institute of Applied Physics, Technische Universität Wien , Wiedner Hauptstraße 8-10, 1040 Vienna, Austria.
Division of Synchrotron Radiation Research, Lund University , Box 118, SE-221 00 Lund, Sweden.
J Phys Chem B. 2018 Jan 18;122(2):721-729. doi: 10.1021/acs.jpcb.7b06349. Epub 2017 Sep 22.
The interaction of CO with the FeO(001)-(√2 × √2)R45° surface was studied using temperature-programmed desorption (TPD), scanning tunneling microscopy (STM), and X-ray photoelectron spectroscopy (XPS), the latter both under ultrahigh vacuum (UHV) conditions and in CO pressures up to 1 mbar. In general, the CO-FeO interaction is found to be weak. The strongest adsorption occurs at surface defects, leading to small TPD peaks at 115, 130, and 190 K. Desorption from the regular surface occurs in two distinct regimes. For coverages up to two CO molecules per (√2 × √2)R45° unit cell, the desorption maximum shows a large shift with increasing coverage, from initially 105 to 70 K. For coverages between 2 and 4 molecules per (√2 × √2)R45° unit cell, a much sharper desorption feature emerges at ∼65 K. Thermodynamic analysis of the TPD data suggests a phase transition from a dilute 2D gas into an ordered overlayer with CO molecules bound to surface Fe sites. XPS data acquired at 45 K in UHV are consistent with physisorption. Some carbon-containing species are observed in the near-ambient-pressure XPS experiments at room temperature but are attributed to contamination and/or reaction with CO with water from the residual gas. No evidence was found for surface reduction or carburization by CO molecules.
利用程序升温脱附(TPD)、扫描隧道显微镜(STM)和X射线光电子能谱(XPS)研究了CO与FeO(001)-(√2 × √2)R45°表面的相互作用,其中XPS实验分别在超高真空(UHV)条件下以及CO压力高达1 mbar的环境中进行。总体而言,发现CO与FeO的相互作用较弱。最强的吸附发生在表面缺陷处,导致在115、130和190 K出现小的TPD峰。从规则表面的脱附分为两个不同的阶段。对于每(√2 × √2)R45°晶胞中CO分子覆盖率高达两个的情况,脱附最大值随覆盖率增加有很大的位移,从最初的105 K移至70 K。对于每(√2 × √2)R45°晶胞中CO分子覆盖率在2至4个之间的情况,在约65 K处出现一个尖锐得多的脱附特征。对TPD数据的热力学分析表明,存在从稀释的二维气体到CO分子与表面Fe位点结合的有序覆盖层的相变。在超高真空下45 K采集的XPS数据与物理吸附一致。在室温下的近常压XPS实验中观察到一些含碳物种,但归因于污染和/或与残余气体中的水与CO的反应。未发现CO分子导致表面还原或渗碳的证据。