Pavelec Jiri, Hulva Jan, Halwidl Daniel, Bliem Roland, Gamba Oscar, Jakub Zdenek, Brunbauer Florian, Schmid Michael, Diebold Ulrike, Parkinson Gareth S
Institute of Applied Physics, TU Wien, Wiedner Hauptstrasse 8-10, 1050 Wien, Austria.
J Chem Phys. 2017 Jan 7;146(1):014701. doi: 10.1063/1.4973241.
The adsorption of CO on the FeO(001)-(2 × 2)R45° surface was studied experimentally using temperature programmed desorption (TPD), photoelectron spectroscopies (UPS and XPS), and scanning tunneling microscopy. CO binds most strongly at defects related to Fe, including antiphase domain boundaries in the surface reconstruction and above incorporated Fe interstitials. At higher coverages,CO adsorbs at fivefold-coordinated Fe sites with a binding energy of 0.4 eV. Above a coverage of 4 molecules per (2 × 2)R45° unit cell, further adsorption results in a compression of the first monolayer up to a density approaching that of a CO ice layer. Surprisingly, desorption of the second monolayer occurs at a lower temperature (≈84 K) than CO multilayers (≈88 K), suggestive of a metastable phase or diffusion-limited island growth. The paper also discusses design considerations for a vacuum system optimized to study the surface chemistry of metal oxide single crystals, including the calibration and characterisation of a molecular beam source for quantitative TPD measurements.
利用程序升温脱附(TPD)、光电子能谱(UPS和XPS)以及扫描隧道显微镜,对CO在FeO(001)-(2×2)R45°表面的吸附进行了实验研究。CO在与Fe相关的缺陷处结合最强,包括表面重构中的反相畴界以及上面掺入的Fe间隙原子。在较高覆盖度下,CO以0.4 eV的结合能吸附在五配位的Fe位点上。在每(2×2)R45°晶胞有4个分子的覆盖度以上,进一步吸附会导致第一层的压缩,直至密度接近CO冰层的密度。令人惊讶的是,第二层的脱附温度(≈84 K)低于CO多层膜(≈88 K),这表明存在亚稳相或扩散限制的岛状生长。本文还讨论了为优化研究金属氧化物单晶表面化学而设计的真空系统的考虑因素,包括用于定量TPD测量的分子束源的校准和表征。