School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006, China.
Department of Mathematics, Sapienza Università di Roma, 00198 Rome, Italy.
Chaos. 2017 Aug;27(8):083108. doi: 10.1063/1.4997761.
Fractal (or transfractal) features are common in real-life networks and are known to influence the dynamic processes taking place in the network itself. Here, we consider a class of scale-free deterministic networks, called (u, v)-flowers, whose topological properties can be controlled by tuning the parameters u and v; in particular, for u > 1, they are fractals endowed with a fractal dimension df, while for u = 1, they are transfractal endowed with a transfractal dimension d̃. In this work, we investigate dynamic processes (i.e., random walks) and topological properties (i.e., the Laplacian spectrum) and we show that, under proper conditions, the same scalings (ruled by the related dimensions) emerge for both fractal and transfractal dimensions.
分形(或转移分形)特征在现实生活中的网络中很常见,并且已知会影响网络本身发生的动态过程。在这里,我们考虑一类具有标度不变性的确定性网络,称为 (u,v)-花,其拓扑性质可以通过调整参数 u 和 v 来控制;特别是对于 u>1,它们是具有分形维数 df 的分形,而对于 u=1,它们是具有转移分形维数 d̃的转移分形。在这项工作中,我们研究了动态过程(即随机游走)和拓扑性质(即拉普拉斯谱),并表明在适当的条件下,分形和转移分形维度都出现了相同的标度(由相关维度决定)。