Suppr超能文献

循环流与振荡网络中的多稳定性。

Cycle flows and multistability in oscillatory networks.

机构信息

Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen, Germany.

Forschungszentrum Jülich, Institute for Energy and Climate Research - Systems Analysis and Technology Evaluation (IEK-STE), 52425 Jülich, Germany.

出版信息

Chaos. 2017 Aug;27(8):083123. doi: 10.1063/1.4994177.

Abstract

We study multistability in phase locked states in networks of phase oscillators under both Kuramoto dynamics and swing equation dynamics-a popular model for studying coarse-scale dynamics of an electrical AC power grid. We first establish the existence of geometrically frustrated states in such systems-where although a steady state flow pattern exists, no fixed point exists in the dynamical variables of phases due to geometrical constraints. We then describe the stable fixed points of the system with phase differences along each edge not exceeding π/2 in terms of cycle flows-constant flows along each simple cycle-as opposed to phase angles or flows. The cycle flow formalism allows us to compute tight upper and lower bounds to the number of fixed points in ring networks. We show that long elementary cycles, strong edge weights, and spatially homogeneous distribution of natural frequencies (for the Kuramoto model) or power injections (for the oscillator model for power grids) cause such networks to have more fixed points. We generalize some of these bounds to arbitrary planar topologies and derive scaling relations in the limit of large capacity and large cycle lengths, which we show to be quite accurate by numerical computation. Finally, we present an algorithm to compute all phase locked states-both stable and unstable-for planar networks.

摘要

我们研究了在 Kuramoto 动力学和摆振方程动力学下,相位振荡器网络中锁定状态的多稳定性——这是一种研究交流电力网格粗粒度动力学的流行模型。我们首先在这样的系统中建立了几何上受挫状态的存在性——尽管存在稳定的流型,但由于几何约束,在相位的动态变量中不存在固定点。然后,我们根据沿每个边缘的相位差不超过π/2 的循环流(每个简单循环的恒定流)来描述系统的稳定固定点,而不是相位角或流。循环流形式主义允许我们计算环形网络中固定点数量的紧上限和下限。我们表明,长基本周期、强边权重以及自然频率(对于 Kuramoto 模型)或功率注入(对于电网振荡器模型)的空间均匀分布导致此类网络具有更多的固定点。我们将这些边界中的一些推广到任意平面拓扑,并在大容量和大周期长度的极限下推导出标度关系,我们通过数值计算表明这些关系非常准确。最后,我们提出了一种算法来计算平面网络的所有锁定状态——包括稳定和不稳定状态。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验