Theoretical Chemistry, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
J Chem Phys. 2017 Aug 28;147(8):084307. doi: 10.1063/1.4990662.
We derive the theory of collision-induced absorption for electronic transitions in the approximation of an isotropic interaction potential. We apply this theory to the spin-forbidden XΣ→aΔ and XΣ→bΣ transitions in O-O, which are relevant for calibration in atmospheric studies. We consider two mechanisms for breaking the spin symmetry, either by the intermolecular exchange interaction between paramagnetic collision partners or by the intramolecular spin-orbit coupling. The calculations for the exchange-based mechanism employ the diabatic potential energy surfaces and transition dipole moment surfaces reported in Paper I [T. Karman et al., J. Chem. Phys. 147, 084306 (2017)]. We show that the line shape of the theoretical absorption spectra is insensitive to the large uncertainty in the electronic transition dipole moment surfaces. We also perform calculations using a simple model of the alternative mechanism involving intramolecular spin-orbit coupling, which leads to absorption intensities which are well below the experimental results. The relative intensity of this spin-orbit-based mechanism may impact the relative contribution to the absorption by collisions with diamagnetic collision partners, such as the atmospherically relevant N molecule. We furthermore show that both the line shape and temperature dependence are signatures of the underlying transition mechanism.
我们在各向同性相互作用势的近似下推导出了电子跃迁碰撞诱导吸收的理论。我们将该理论应用于 O-O 中自旋禁阻的 XΣ→aΔ 和 XΣ→bΣ 跃迁,这对大气研究中的定标很重要。我们考虑了两种打破自旋对称性的机制,一种是通过顺磁碰撞伙伴之间的分子间交换相互作用,另一种是通过分子内自旋轨道耦合。基于交换的机制的计算采用了论文 I [T. Karman 等人,J. Chem. Phys. 147, 084306 (2017)]中报道的非绝热势能面和跃迁偶极矩面。我们表明,理论吸收光谱的线形对电子跃迁偶极矩面的大不确定性不敏感。我们还使用涉及分子内自旋轨道耦合的替代机制的简单模型进行了计算,这导致吸收强度远低于实验结果。这种基于自旋轨道的机制的相对强度可能会影响与顺磁碰撞伙伴(如大气相关的 N 分子)碰撞的吸收的相对贡献。此外,我们还表明,线形和温度依赖性都是底层跃迁机制的特征。