Suppr超能文献

OPUS-DOSP:一种基于侧链堆积的距离和方向相关的全原子势

OPUS-DOSP: A Distance- and Orientation-Dependent All-Atom Potential Derived from Side-Chain Packing.

作者信息

Xu Gang, Ma Tianqi, Zang Tianwu, Sun Weitao, Wang Qinghua, Ma Jianpeng

机构信息

School of Life Sciences, Tsinghua University, Beijing 100084, China.

Applied Physics Program, Rice University, Houston, TX 77005, United States; Department of Bioengineering, Rice University, Houston, TX 77005, United States.

出版信息

J Mol Biol. 2017 Oct 13;429(20):3113-3120. doi: 10.1016/j.jmb.2017.08.013. Epub 2017 Aug 31.

Abstract

We report a new distance- and orientation-dependent, all-atom statistical potential derived from side-chain packing, named OPUS-DOSP, for protein structure modeling. The framework of OPUS-DOSP is based on OPUS-PSP, previously developed by us [JMB (2008), 376, 288-301], with refinement and new features. In particular, distance or orientation contribution is considered depending on the range of contact distance. A new auxiliary function in energy function is also introduced, in addition to the traditional Boltzmann term, in order to adjust the contributions of extreme cases. OPUS-DOSP was tested on 11 decoy sets commonly used for statistical potential benchmarking. Among 278 native structures, 239 and 249 native structures were recognized by OPUS-DOSP without and with the auxiliary function, respectively. The results show that OPUS-DOSP has an increased decoy recognition capability comparing with those of other relevant potentials to date.

摘要

我们报道了一种新的基于侧链堆积的、与距离和方向相关的全原子统计势,命名为OPUS-DOSP,用于蛋白质结构建模。OPUS-DOSP的框架基于我们之前开发的OPUS-PSP[《分子生物学杂志》(2008年),376卷,288 - 301页],并进行了改进和添加了新特性。特别是,根据接触距离的范围考虑距离或方向贡献。除了传统的玻尔兹曼项外,还在能量函数中引入了一个新的辅助函数,以调整极端情况的贡献。OPUS-DOSP在常用于统计势基准测试的11个诱饵集上进行了测试。在278个天然结构中,OPUS-DOSP在没有辅助函数和有辅助函数的情况下分别识别出239个和249个天然结构。结果表明,与迄今为止其他相关势相比,OPUS-DOSP具有更强的诱饵识别能力。

相似文献

引用本文的文献

7
Computational reconstruction of atomistic protein structures from coarse-grained models.基于粗粒度模型的蛋白质原子结构的计算重建
Comput Struct Biotechnol J. 2019 Dec 26;18:162-176. doi: 10.1016/j.csbj.2019.12.007. eCollection 2020.

本文引用的文献

2
Coarse-Grained Protein Models and Their Applications.粗粒度蛋白质模型及其应用。
Chem Rev. 2016 Jul 27;116(14):7898-936. doi: 10.1021/acs.chemrev.6b00163. Epub 2016 Jun 22.
8
QM/MM methods for biomolecular systems.用于生物分子系统的量子力学/分子力学方法。
Angew Chem Int Ed Engl. 2009;48(7):1198-229. doi: 10.1002/anie.200802019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验