Center for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, Atlanta, Georgia, USA.
Biophys J. 2011 Oct 19;101(8):2043-52. doi: 10.1016/j.bpj.2011.09.012.
An accurate scoring function is a key component for successful protein structure prediction. To address this important unsolved problem, we develop a generalized orientation and distance-dependent all-atom statistical potential. The new statistical potential, generalized orientation-dependent all-atom potential (GOAP), depends on the relative orientation of the planes associated with each heavy atom in interacting pairs. GOAP is a generalization of previous orientation-dependent potentials that consider only representative atoms or blocks of side-chain or polar atoms. GOAP is decomposed into distance- and angle-dependent contributions. The DFIRE distance-scaled finite ideal gas reference state is employed for the distance-dependent component of GOAP. GOAP was tested on 11 commonly used decoy sets containing 278 targets, and recognized 226 native structures as best from the decoys, whereas DFIRE recognized 127 targets. The major improvement comes from decoy sets that have homology-modeled structures that are close to native (all within ∼4.0 Å) or from the ROSETTA ab initio decoy set. For these two kinds of decoys, orientation-independent DFIRE or only side-chain orientation-dependent RWplus performed poorly. Although the OPUS-PSP block-based orientation-dependent, side-chain atom contact potential performs much better (recognizing 196 targets) than DFIRE, RWplus, and dDFIRE, it is still ∼15% worse than GOAP. Thus, GOAP is a promising advance in knowledge-based, all-atom statistical potentials. GOAP is available for download at http://cssb.biology.gatech.edu/GOAP.
准确的评分函数是成功进行蛋白质结构预测的关键组成部分。为了解决这个重要的未解决问题,我们开发了一种通用的取向和距离相关的全原子统计势。新的统计势,广义取向相关全原子势(GOAP),取决于相互作用对中每个重原子相关平面的相对取向。GOAP 是以前的取向相关势的推广,以前的取向相关势只考虑代表性原子或侧链或极性原子的块。GOAP 分解为距离和角度相关的贡献。DFIRE 距离缩放有限理想气体参考状态用于 GOAP 的距离相关分量。GOAP 在 11 个常用的诱饵集中进行了测试,其中包含 278 个目标,从诱饵中识别出 226 个天然结构,而 DFIRE 识别出 127 个目标。主要的改进来自于与天然结构(所有结构均在 ∼4.0 Å 以内)接近的同源建模结构的诱饵集,或者来自于 ROSETTA 从头计算的诱饵集。对于这两种诱饵集,不依赖于取向的 DFIRE 或仅侧链取向相关的 RWplus 表现不佳。尽管基于块的 OPUS-PSP 定向侧链原子接触势(识别 196 个目标)比 DFIRE、RWplus 和 dDFIRE 表现要好得多,但仍比 GOAP 差约 15%。因此,GOAP 是基于知识的全原子统计势的一项有前途的进展。GOAP 可在 http://cssb.biology.gatech.edu/GOAP 下载。