Suppr超能文献

利用编码激励信号对弹性板的厚度和声速进行同步超声测量。

Simultaneous Ultrasonic Measurement of Thickness and Speed of Sound in Elastic Plates Using Coded Excitation Signals.

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Nov;64(11):1744-1757. doi: 10.1109/TUFFC.2017.2746900. Epub 2017 Aug 30.

Abstract

Layer thickness and the speed of sound are important parameters for nondestructive testing applications. If one of the parameters is known, the other one can be determined by simple time-of-flight (TOF) measurement of ultrasound. However, often these parameters are both unknown. In this contribution, we examine and adapt ultrasonic imaging techniques using coded excitation signals to simultaneously measure the thickness and the speed of sound of homogeneous elastic plates of unknown material. Good axial resolution is required to measure thin samples. We present a new approach for transmission signal conditioning to improve axial resolution. This conditioning consists of enhancing spectral components that are damped by the transducer prior to transmit. Due to the long duration of coded excitation signals, pulse compression techniques are required for TOF measurements. Common pulse compression filters are discussed, and appropriate filtering of the compression waveform is designed to keep the sidelobe level (SLL) acceptably low. An experimental assessment of the presented measurement techniques reveals that the signal conditioning substantially increases the axial resolution. However, a tapered Wiener filter should be used for the best tradeoff between SLL and axial resolution. We used the proposed method to measure different plates of steel, aluminum, and polymethylmethacrylate of various thicknesses, and the results show very good agreement with the reference values, which we obtained with a micrometer screw and by standard TOF measurement, respectively. The relative error for the plate thickness is smaller than 2.2% and that for the speed of sound is smaller than 3%. It is remarkable that plate thickness could be measured down to 60% of the wavelength.

摘要

层厚和声速是无损检测应用中的重要参数。如果已知其中一个参数,则可以通过简单的超声渡越时间 (TOF) 测量来确定另一个参数。然而,通常这两个参数都是未知的。在本贡献中,我们研究并适应了使用编码激励信号的超声成像技术,以同时测量未知材料的均匀弹性板的厚度和声速。为了测量薄样品,需要良好的轴向分辨率。我们提出了一种新的传输信号调理方法,以提高轴向分辨率。这种调理包括增强在发射前被换能器阻尼的频谱分量。由于编码激励信号的持续时间较长,因此需要脉冲压缩技术进行 TOF 测量。讨论了常见的脉冲压缩滤波器,并设计了适当的压缩波形滤波,以保持较低的旁瓣电平 (SLL)。对所提出的测量技术的实验评估表明,信号调理可大大提高轴向分辨率。然而,为了在 SLL 和轴向分辨率之间取得最佳折衷,应该使用锥形维纳滤波器。我们使用提出的方法测量了不同厚度的钢、铝和聚甲基丙烯酸甲酯的不同板,结果与我们分别使用千分尺螺丝和标准 TOF 测量获得的参考值非常吻合。板厚的相对误差小于 2.2%,声速的相对误差小于 3%。值得注意的是,板厚可以测量到波长的 60%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验