IEEE Trans Vis Comput Graph. 2018 Jan;24(1):288-297. doi: 10.1109/TVCG.2017.2745078. Epub 2017 Aug 29.
People often rank and order data points as a vital part of making decisions. Multi-attribute ranking systems are a common tool used to make these data-driven decisions. Such systems often take the form of a table-based visualization in which users assign weights to the attributes representing the quantifiable importance of each attribute to a decision, which the system then uses to compute a ranking of the data. However, these systems assume that users are able to quantify their conceptual understanding of how important particular attributes are to a decision. This is not always easy or even possible for users to do. Rather, people often have a more holistic understanding of the data. They form opinions that data point A is better than data point B but do not necessarily know which attributes are important. To address these challenges, we present a visual analytic application to help people rank multi-variate data points. We developed a prototype system, Podium, that allows users to drag rows in the table to rank order data points based on their perception of the relative value of the data. Podium then infers a weighting model using Ranking SVM that satisfies the user's data preferences as closely as possible. Whereas past systems help users understand the relationships between data points based on changes to attribute weights, our approach helps users to understand the attributes that might inform their understanding of the data. We present two usage scenarios to describe some of the potential uses of our proposed technique: (1) understanding which attributes contribute to a user's subjective preferences for data, and (2) deconstructing attributes of importance for existing rankings. Our proposed approach makes powerful machine learning techniques more usable to those who may not have expertise in these areas.
人们经常将数据点进行排序和分类,作为做出决策的重要部分。多属性排序系统是一种常用的工具,用于做出这些数据驱动的决策。这种系统通常采用基于表格的可视化形式,用户可以为代表每个属性对决策的可量化重要性的属性分配权重,系统然后使用这些权重来计算数据的排序。然而,这些系统假设用户能够量化他们对特定属性对决策的重要性的概念理解。这对于用户来说并不总是容易的,甚至是不可能的。相反,人们通常对数据有更全面的理解。他们形成了数据点 A 优于数据点 B 的观点,但不一定知道哪些属性是重要的。为了解决这些挑战,我们提出了一种可视化分析应用程序来帮助人们对多变量数据点进行排序。我们开发了一个原型系统 Podium,允许用户根据对数据相对价值的感知,在表格中拖动行来对数据点进行排序。然后,Podium 使用 Ranking SVM 推断权重模型,该模型尽可能接近地满足用户的数据偏好。过去的系统帮助用户根据属性权重的变化来理解数据点之间的关系,而我们的方法则帮助用户理解可能影响他们对数据理解的属性。我们提出了两个使用场景来描述我们提出的技术的一些潜在用途:(1)了解哪些属性有助于用户对数据的主观偏好,(2)分解现有排名中重要的属性。我们提出的方法使那些可能没有这些领域专业知识的人更容易使用强大的机器学习技术。