Suppr超能文献

冠层辐射传输中的光谱不变近似,以支持利用EPIC/DSCOVR氧B波段监测植被。

The spectral invariant approximation within canopy radiative transfer to support the use of the EPIC/DSCOVR oxygen B-band for monitoring vegetation.

作者信息

Marshak Alexander, Knyazikhin Yuri

机构信息

NASA/GSFC, United States.

Boston University, United States.

出版信息

J Quant Spectrosc Radiat Transf. 2017 Apr;191:7-12. doi: 10.1016/j.jqsrt.2017.01.015. Epub 2017 Jan 12.

Abstract

EPIC (Earth Polychromatic Imaging Camera) is a 10-channel spectroradiometer onboard DSCOVR (Deep Space Climate Observatory) spacecraft. In addition to the near-infrared (NIR, 780 nm) and the 'red' (680 nm) channels, EPIC also has the O2 A-band (764±0.2 nm) and B-band (687.75±0.2 nm). The EPIC Normalized Difference Vegetation Index (NDVI) is defined as the difference between NIR and 'red' channels normalized to their sum. However, the use of the O2 B-band instead of the 'red' channel mitigates the effect of atmosphere on remote sensing of surface reflectance because O2 reduces contribution from the radiation scattered by the atmosphere. Applying the radiative transfer theory and the spectral invariant approximation to EPIC observations, the paper provides supportive arguments for using the O2 band instead of the red channel for monitoring vegetation dynamics. Our results suggest that the use of the O2 B-band enhances the sensitivity of the top-of-atmosphere NDVI to the presence of vegetation.

摘要

地球多色成像相机(EPIC)是深空气候观测站(DSCOVR)航天器上的一台10通道光谱辐射计。除了近红外(NIR,780纳米)和“红色”(680纳米)通道外,EPIC还有氧气A波段(764±0.2纳米)和B波段(687.75±0.2纳米)。EPIC归一化植被指数(NDVI)定义为近红外和“红色”通道的差值除以它们的和。然而,使用氧气B波段而非“红色”通道可减轻大气对地表反射率遥感的影响,因为氧气减少了大气散射辐射的贡献。将辐射传输理论和光谱不变近似应用于EPIC观测,本文为使用氧气波段而非红色通道监测植被动态提供了支持性论据。我们的结果表明,使用氧气B波段可提高大气顶NDVI对植被存在的敏感性。

相似文献

1
The spectral invariant approximation within canopy radiative transfer to support the use of the EPIC/DSCOVR oxygen B-band for monitoring vegetation.
J Quant Spectrosc Radiat Transf. 2017 Apr;191:7-12. doi: 10.1016/j.jqsrt.2017.01.015. Epub 2017 Jan 12.
2
Earth Observations from DSCOVR/EPIC Instrument.
Bull Am Meteorol Soc. 2018 Sep;99(9):1829-1850. doi: 10.1175/BAMS-D-17-0223.1. Epub 2018 Oct 9.
3
Calibration of the DSCOVR EPIC visible and NIR channels using MODIS Terra and Aqua data and EPIC lunar observations.
Atmos Meas Tech. 2018 Jan;11(1):359-368. doi: 10.5194/amt-11-359-2018. Epub 2018 Jan 17.
5
Estimation of leaf area index and its sunlit portion from DSCOVR EPIC data: Theoretical basis.
Remote Sens Environ. 2017 Sep 1;198:69-84. doi: 10.1016/j.rse.2017.05.033. Epub 2017 Jun 3.
6
EPIC Spectral Observations of Variability in Earth's Global Reflectance.
Remote Sens (Basel). 2018;10(2):254. doi: 10.3390/rs10020254.
10
Test of multi-spectral vegetation index for floating and canopy-forming submerged vegetation.
Int J Environ Res Public Health. 2008 Dec;5(5):477-83. doi: 10.3390/ijerph5050477.

引用本文的文献

1
Calibration of the DSCOVR EPIC visible and NIR channels using MODIS Terra and Aqua data and EPIC lunar observations.
Atmos Meas Tech. 2018 Jan;11(1):359-368. doi: 10.5194/amt-11-359-2018. Epub 2018 Jan 17.
3
Earth Observations from DSCOVR/EPIC Instrument.
Bull Am Meteorol Soc. 2018 Sep;99(9):1829-1850. doi: 10.1175/BAMS-D-17-0223.1. Epub 2018 Oct 9.

本文引用的文献

2
Hyperspectral remote sensing of foliar nitrogen content.
Proc Natl Acad Sci U S A. 2013 Jan 15;110(3):E185-92. doi: 10.1073/pnas.1210196109. Epub 2012 Dec 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验