Suppr超能文献

来自深空气候观测站/地球多光谱成像相机仪器的地球观测数据

Earth Observations from DSCOVR/EPIC Instrument.

作者信息

Marshak Alexander, Herman Jay, Szabo Adam, Blank Karin, Cede Alexander, Carn Simon, Geogdzhayev Igor, Huang Dong, Huang Liang-Kang, Knyazikhin Yuri, Kowalewski Matthew, Krotkov Nickolay, Lyapustin Alexei, McPeters Richard, Torres Omar, Yang Yuekui

机构信息

NASA/GSFC.

UMBC.

出版信息

Bull Am Meteorol Soc. 2018 Sep;99(9):1829-1850. doi: 10.1175/BAMS-D-17-0223.1. Epub 2018 Oct 9.

Abstract

The NOAA Deep Space Climate Observatory (DSCOVR) spacecraft was launched on February 11, 2015, and in June 2015 achieved its orbit at the first Lagrange point or L1, 1.5 million km from Earth towards the Sun. There are two NASA Earth observing instruments onboard: the Earth Polychromatic Imaging Camera (EPIC) and the National Institute of Standards and Technology Advanced Radiometer (NISTAR). The purpose of this paper is to describe various capabilities of the DSCOVR/EPIC instrument. EPIC views the entire sunlit Earth from sunrise to sunset at the backscattering direction (scattering angles between 168.5° and 175.5°) with 10 narrowband filters: 317, 325, 340, 388, 443, 552, 680, 688, 764 and 779 nm. We discuss a number of pre-processingsteps necessary for EPIC calibration including the geolocation algorithm and the radiometric calibration for each wavelength channel in terms of EPIC counts/second for conversion to reflectance units. The principal EPIC products are total ozone Oamount, scene reflectivity, erythemal irradiance, UV aerosol properties, sulfur dioxide SO for volcanic eruptions, surface spectral reflectance, vegetation properties, and cloud products including cloud height. Finally, we describe the observation of horizontally oriented ice crystals in clouds and the unexpected use of the O2 B-band absorption for vegetation properties.

摘要

美国国家海洋和大气管理局的深空气候观测站(DSCOVR)航天器于2015年2月11日发射升空,并于2015年6月在距地球150万公里、朝向太阳的第一拉格朗日点(L1)进入轨道。航天器上搭载了两台美国国家航空航天局的地球观测仪器:地球多色成像相机(EPIC)和美国国家标准与技术研究院先进辐射计(NISTAR)。本文旨在描述DSCOVR/EPIC仪器的各种功能。EPIC在背向散射方向(散射角在168.5°至175.5°之间),利用10个窄带滤光片(317、325、340、388、443、552、680、688、764和779纳米),从日出到日落观测整个被阳光照亮的地球。我们讨论了EPIC校准所需的一些预处理步骤,包括地理定位算法以及每个波长通道的辐射校准,该校准以EPIC每秒计数为单位,用于转换为反射率单位。EPIC的主要产品包括总臭氧量、场景反射率、红斑辐照度、紫外气溶胶特性、火山喷发的二氧化硫、地表光谱反射率、植被特性以及包括云高度在内的云产品。最后,我们描述了对云中水平取向冰晶的观测以及O2 B波段吸收在植被特性方面的意外应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78f2/6208167/b01f43225a3a/nihms-1507805-f0001.jpg

相似文献

1
Earth Observations from DSCOVR/EPIC Instrument.来自深空气候观测站/地球多光谱成像相机仪器的地球观测数据
Bull Am Meteorol Soc. 2018 Sep;99(9):1829-1850. doi: 10.1175/BAMS-D-17-0223.1. Epub 2018 Oct 9.

引用本文的文献

2
Structural complexity biases vegetation greenness measures.结构复杂性偏倚植被绿色度测量。
Nat Ecol Evol. 2023 Nov;7(11):1790-1798. doi: 10.1038/s41559-023-02187-6. Epub 2023 Sep 14.
5
Human habitats: prospects for infrastructure supporting astronomy from the Moon.人类栖息地:从月球支持天文学的基础设施前景。
Philos Trans A Math Phys Eng Sci. 2021 Jan 11;379(2188):20190568. doi: 10.1098/rsta.2019.0568. Epub 2020 Nov 23.

本文引用的文献

7
Remote sensing of canopy chemistry.冠层化学遥感
Proc Natl Acad Sci U S A. 2013 Jan 15;110(3):804-5. doi: 10.1073/pnas.1219393110. Epub 2013 Jan 7.
8
Hyperspectral remote sensing of foliar nitrogen content.叶片氮含量的高光谱遥感。
Proc Natl Acad Sci U S A. 2013 Jan 15;110(3):E185-92. doi: 10.1073/pnas.1210196109. Epub 2012 Dec 4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验