Suppr超能文献

基于平稳小波变换的可穿戴式心电图运动伪迹去除方法

Motion artefact removals for wearable ECG using stationary wavelet transform.

作者信息

Nagai Shuto, Anzai Daisuke, Wang Jianqing

机构信息

Nagoya Institute of Technology, Nagoya 466-8555, Japan.

出版信息

Healthc Technol Lett. 2017 Jun 14;4(4):138-141. doi: 10.1049/htl.2016.0100. eCollection 2017 Aug.

Abstract

Wearable Electrocardiogram (ECG) is attracting much attention in daily healthcare applications. From the viewpoint of long-term use, it is desired that the electrodes are non-contact with the human body. In this study, the authors propose an algorithm using the stationary wavelet transform (SWT) to remove motion artefact superimposed on ECG signal when using non-contact capacitively coupling electrodes. The authors evaluate the effect on motion artefact removal of this algorithm by applying it to various ECG signals with motion artefacts superimposed. As a result, the correlation coefficients of ECG signals with respect to the clean ones have been improved from 0.71 to 0.88 on median before and after motion artefact removal, which demonstrates the validity of the proposed SWT-based algorithm.

摘要

可穿戴心电图(ECG)在日常医疗保健应用中备受关注。从长期使用的角度来看,希望电极与人体无接触。在本研究中,作者提出了一种使用平稳小波变换(SWT)的算法,用于在使用非接触电容耦合电极时去除叠加在心电图信号上的运动伪迹。作者通过将该算法应用于各种叠加了运动伪迹的心电图信号,评估了该算法对去除运动伪迹的效果。结果表明,去除运动伪迹前后,心电图信号与纯净信号的相关系数中位数从0.71提高到了0.88,这证明了所提出的基于SWT算法的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5309/5569871/dd5c27f82174/HTL.2016.0100.01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验