Suppr超能文献

一种基于外核GPU的用于海量质谱数据的降维算法及其在自下而上蛋白质组学中的应用。

An Out-of-Core GPU based dimensionality reduction algorithm for Big Mass Spectrometry Data and its application in bottom-up Proteomics.

作者信息

Awan Muaaz Gul, Saeed Fahad

机构信息

Department of Computer Science, Western Michigan University, 4601 Campus Drive, Kalamazoo, Michigan 49009,

出版信息

ACM BCB. 2017 Aug;2017:550-555. doi: 10.1145/3107411.3107466.

Abstract

Modern high resolution Mass Spectrometry instruments can generate millions of spectra in a single systems biology experiment. Each spectrum consists of thousands of peaks but only a small number of peaks actively contribute to deduction of peptides. Therefore, pre-processing of MS data to detect noisy and non-useful peaks are an active area of research. Most of the sequential noise reducing algorithms are impractical to use as a pre-processing step due to high time-complexity. In this paper, we present a GPU based dimensionality-reduction algorithm, called G-MSR, for MS2 spectra. Our proposed algorithm uses novel data structures which optimize the memory and computational operations inside GPU. These novel data structures include and . The former helps in communicating essential information between CPU and GPU using minimum amount of data while latter enables us to store and process complex 3-D data structure into a 1-D array structure while maintaining the integrity of MS data. Our proposed algorithm also takes into account the limited memory of GPUs and switches between and modes based upon the size of input data. G-MSR achieves a peak speed-up of 386x over its sequential counterpart and is shown to process over a million spectra in just 32 seconds. The code for this algorithm is available as a GPL open-source at GitHub at the following link: https://github.com/pcdslab/G-MSR.

摘要

现代高分辨率质谱仪在单个系统生物学实验中可生成数百万个光谱。每个光谱由数千个峰组成,但只有少数峰对肽段的推导有实际贡献。因此,对质谱数据进行预处理以检测噪声峰和无用峰是一个活跃的研究领域。由于时间复杂度高,大多数顺序降噪算法作为预处理步骤并不实用。在本文中,我们提出了一种基于GPU的用于MS2光谱的降维算法,称为G-MSR。我们提出的算法使用了新颖的数据结构,这些结构优化了GPU内部的内存和计算操作。这些新颖的数据结构包括 和 。前者有助于使用最少的数据量在CPU和GPU之间传递基本信息,而后者使我们能够将复杂的三维数据结构存储和处理为一维数组结构,同时保持质谱数据的完整性。我们提出的算法还考虑了GPU内存的限制,并根据输入数据的大小在 和 模式之间切换。G-MSR比其顺序算法实现了386倍的峰值加速,并且在短短32秒内就能处理超过一百万个光谱。该算法的代码可在GitHub上以GPL开源形式获取,链接如下:https://github.com/pcdslab/G-MSR

相似文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验