Suppr超能文献

快速GPU-PCC:一种基于GPU的用于计算时间序列数据(功能磁共振成像研究)的成对皮尔逊相关系数的技术。

Fast-GPU-PCC: A GPU-Based Technique to Compute Pairwise Pearson's Correlation Coefficients for Time Series Data-fMRI Study.

作者信息

Eslami Taban, Saeed Fahad

机构信息

Department of Computer Science, Western Michigan University, Kalamazoo, MI 49008, USA.

出版信息

High Throughput. 2018 Apr 20;7(2):11. doi: 10.3390/ht7020011.

Abstract

Functional magnetic resonance imaging (fMRI) is a non-invasive brain imaging technique, which has been regularly used for studying brain’s functional activities in the past few years. A very well-used measure for capturing functional associations in brain is Pearson’s correlation coefficient. Pearson’s correlation is widely used for constructing functional network and studying dynamic functional connectivity of the brain. These are useful measures for understanding the effects of brain disorders on connectivities among brain regions. The fMRI scanners produce huge number of voxels and using traditional central processing unit (CPU)-based techniques for computing pairwise correlations is very time consuming especially when large number of subjects are being studied. In this paper, we propose a graphics processing unit (GPU)-based algorithm called for computing pairwise Pearson’s correlation coefficient. Based on the symmetric property of Pearson’s correlation, this approach returns N ( N − 1 ) / 2 correlation coefficients located at strictly upper triangle part of the correlation matrix. Storing correlations in a one-dimensional array with the order as proposed in this paper is useful for further usage. Our experiments on real and synthetic fMRI data for different number of voxels and varying length of time series show that the proposed approach outperformed state of the art GPU-based techniques as well as the sequential CPU-based versions. We show that Fast-GPU-PCC runs 62 times faster than CPU-based version and about 2 to 3 times faster than two other state of the art GPU-based methods.

摘要

功能磁共振成像(fMRI)是一种非侵入性脑成像技术,在过去几年中一直被用于研究大脑的功能活动。皮尔逊相关系数是一种常用于捕捉大脑功能关联的指标。皮尔逊相关广泛应用于构建功能网络和研究大脑的动态功能连接性。这些指标对于理解脑部疾病对脑区之间连接性的影响很有帮助。功能磁共振成像扫描仪会产生大量体素,使用基于传统中央处理器(CPU)的技术来计算成对相关性非常耗时,尤其是在研究大量受试者时。在本文中,我们提出了一种基于图形处理器(GPU)的算法,称为快速GPU皮尔逊相关系数算法(Fast-GPU-PCC),用于计算成对皮尔逊相关系数。基于皮尔逊相关的对称性,该方法返回位于相关矩阵严格上三角部分的N(N - 1)/ 2个相关系数。按照本文提出的顺序将相关性存储在一维数组中便于进一步使用。我们对不同体素数量和不同时间序列长度的真实和合成功能磁共振成像数据进行的实验表明,所提出的方法优于现有的基于GPU的技术以及基于CPU的顺序版本。我们表明,快速GPU皮尔逊相关系数算法比基于CPU的版本快62倍,比另外两种现有的基于GPU的方法快约2至3倍。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验