Yumura Takashi, Yamamoto Wataru
Faculty of Materials Science and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
Phys Chem Chem Phys. 2017 Sep 20;19(36):24819-24828. doi: 10.1039/c7cp03128a.
We employed density functional theory (DFT) calculations with dispersion corrections to investigate energetically preferred alignments of certain p,p'-dimethylaminonitrostilbene (DANS) molecules inside an armchair (m,m) carbon nanotube (n × DANS@(m,m)), where the number of inner molecules (n) is no greater than 3. Here, three types of alignments of DANS are considered: a linear alignment in a parallel fashion and stacking alignments in parallel and antiparallel fashions. According to DFT calculations, a threshold tube diameter for containing DANS molecules in linear or stacking alignments was found to be approximately 1.0 nm. Nanotubes with diameters smaller than 1.0 nm result in the selective formation of linearly aligned DANS molecules due to strong confinement effects within the nanotubes. By contrast, larger diameter nanotubes allow DANS molecules to align in a stacking and linear fashion. The type of alignment adopted by the DANS molecules inside a nanotube is responsible for their second-order non-linear optical properties represented by their static hyperpolarizability (β values). In fact, we computed β values of DANS assemblies taken from optimized n × DANS@(m,m) structures, and their values were compared with those of a single DANS molecule. DFT calculations showed that β values of DANS molecules depend on their alignment, which decrease in the following order: linear alignment > parallel stacking alignment > antiparallel stacking alignment. In particular, a linear alignment has a β value more significant than that of the same number of isolated molecules. Therefore, the linear alignment of DANS molecules, which is only allowed inside smaller diameter nanotubes, can strongly enhance their second-order non-linear optical properties. Since the nanotube confinement determines the alignment of DANS molecules, a restricted nanospace can be utilized to control their second-order non-linear optical properties. These DFT findings can assist in the design of nanotube-based materials exhibiting stronger non-linear optical properties.
我们采用含色散校正的密度泛函理论(DFT)计算方法,研究了某些对,对'-二甲基氨基硝基芪(DANS)分子在扶手椅型(m,m)碳纳米管(n×DANS@(m,m))内能量上优先的排列方式,其中内部分子数(n)不大于3。在此,考虑了DANS的三种排列类型:平行的线性排列以及平行和反平行方式的堆积排列。根据DFT计算,发现容纳线性或堆积排列的DANS分子的临界管直径约为1.0纳米。直径小于1.0纳米的纳米管由于纳米管内的强限制效应导致线性排列的DANS分子选择性形成。相比之下,较大直径的纳米管允许DANS分子以堆积和线性方式排列。纳米管内DANS分子采用的排列类型决定了其由静态超极化率(β值)表示的二阶非线性光学性质。事实上,我们计算了从优化的n×DANS@(m,m)结构中获取的DANS聚集体的β值,并将其值与单个DANS分子的β值进行了比较。DFT计算表明,DANS分子的β值取决于其排列方式,排列方式对β值的影响顺序为:线性排列>平行堆积排列>反平行堆积排列。特别是,线性排列的β值比相同数量的孤立分子的β值更显著。因此,仅在较小直径纳米管内才允许的DANS分子的线性排列可以强烈增强其二阶非线性光学性质。由于纳米管限制决定了DANS分子的排列,受限的纳米空间可用于控制其二阶非线性光学性质。这些DFT研究结果有助于设计具有更强非线性光学性质的基于纳米管的材料。