Suppr超能文献

有序的电子迁移促进析氢:通过简便的超声化学方法将二维 MoS 纳米片与等离子体光催化剂集成。

Well-organized migration of electrons for enhanced hydrogen evolution: Integration of 2D MoS nanosheets with plasmonic photocatalyst by a facile ultrasonic chemical method.

机构信息

State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083, People's Republic of China.

School of Materials Science and Engineering, Central South University, Changsha 410083, People's Republic of China.

出版信息

J Colloid Interface Sci. 2017 Dec 15;508:559-566. doi: 10.1016/j.jcis.2017.08.084. Epub 2017 Aug 30.

Abstract

The construction of a plasmonic photocatalyst is an efficient way to suppress detrimental electrons-holes recombination and extend the spectral range of light absorption in semiconductors. However, the facilitation effect in the aspect of electrons-holes separation is great limited as the lack of a driving force compelled the electrons or holes migration to surface catalytic sites makes them flow randomly in semiconductors. In this work, we confirm that the integration of MoS nanosheets formed two dimensional (2D) layered heterojunction with CN with Au-CN plasmonic photocatalyst can further enhance electrons-holes separation through the formation of Au-CN-MoS nanostructure by a facile ultrasonic chemical method. The integrated MoS nanosheets extract the electrons not only from CN due to a building up of 2D layered heterojunction but also from plasmonic Au via a "pipe" played by CN. The electrons "pump" role of the 2D MoS nanosheets makes electrons flow randomly turn into the well-organized migration direction, promoting the electrons-holes more efficient separation and lifetime prolongation. Meanwhile, MoS nanosheets also increase the light absorption of the photocatalyst owing to its inherent strength of the narrower band gap. Enabled by integration of 2D MoS nanosheets, the hydrogen production rate is 2.08 times higher than that of its counterpart Au-CN This work highlights a new window to employ 2D layered heterojunction for enhanced photocatalytic hydrogen evolution performance.

摘要

构建等离子体光催化剂是抑制有害的电子-空穴复合并扩展半导体光吸收光谱范围的有效方法。然而,由于缺乏驱动力迫使电子或空穴迁移到表面催化位点,使得它们在半导体中随机流动,因此在电子-空穴分离方面的促进作用受到很大限制。在这项工作中,我们证实通过简便的超声化学方法形成 Au-CN-MoS 纳米结构,将 MoS 纳米片与 CN 形成二维(2D)层状异质结与 Au-CN 等离子体光催化剂的集成可以进一步增强电子-空穴分离。集成的 MoS 纳米片不仅由于 2D 层状异质结的构建从 CN 中提取电子,而且通过 CN 形成的“管道”从等离子体 Au 中提取电子。2D MoS 纳米片的“泵送”作用使电子随机流动转变为组织有序的迁移方向,促进电子-空穴更有效地分离和寿命延长。同时,由于其固有较弱的带隙强度,MoS 纳米片也增加了光催化剂的光吸收。通过集成 2D MoS 纳米片,产氢速率比其对应物 Au-CN 高 2.08 倍。这项工作为利用二维层状异质结增强光催化产氢性能提供了一个新的窗口。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验