Department of Chemical and Biological Engineering, Korea University, Seoul, 136-713, Republic of Korea.
Convergence Research Division, National Marine Biodiversity Institute of Korea, Jangsan-ro 101beon-gil 75, Janghang-eup, Seocheon-gun, Chungcheongnam-do, 33662, Republic of Korea.
Sci Rep. 2017 Sep 4;7(1):10390. doi: 10.1038/s41598-017-10764-6.
Microalgae - unicellular photosynthetic organisms - have received increasing attention for their ability to biologically convert CO into valuable products. The commercial use of microalgae requires screening strains to improve the biomass productivity to achieve a high-throughput. Here, we developed a microfluidic method that uses a magnetic field to separate the microdroplets containing different concentrations of microalgal cells. The separation efficiency is maximized using the following parameters that influence the amount of lateral displacement of the microdroplets: magnetic nanoparticle concentration, flow rate of droplets, x- and y-axis location of the magnet, and diameter of the droplets. Consequently, 91.90% of empty, 87.12% of low-, and 90.66% of high-density droplets could be separated into different outlets through simple manipulation of the magnetic field in the microfluidic device. These results indicate that cell density-based separation of microdroplets using a magnetic force can provide a promising platform to isolate microalgal species with a high growth performance.
微藻 - 单细胞光合生物 - 因其能够将 CO 生物转化为有价值的产品而受到越来越多的关注。微藻的商业用途需要筛选菌株以提高生物量生产力,以实现高通量。在这里,我们开发了一种使用磁场分离含有不同浓度微藻细胞的微滴的微流控方法。通过以下影响微滴横向位移量的参数最大化分离效率:磁性纳米颗粒浓度、液滴流速、磁体的 x 和 y 轴位置以及液滴直径。因此,通过在微流控装置中简单地操纵磁场,可以将 91.90%的空微滴、87.12%的低密度微滴和 90.66%的高密度微滴分别分离到不同的出口。这些结果表明,使用磁场基于细胞密度的微滴分离可以为分离具有高生长性能的微藻物种提供一个有前途的平台。