Suppr超能文献

基于光流的心肌细胞收缩力无创分析。

Optical-flow based non-invasive analysis of cardiomyocyte contractility.

机构信息

Department of Anatomy & Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.

Department of Biological Physics, Eotvos University, Budapest, Hungary.

出版信息

Sci Rep. 2017 Sep 4;7(1):10404. doi: 10.1038/s41598-017-10094-7.

Abstract

Characterization of cardiomyocyte beat patterns is needed for quality control of cells intended for surgical injection as well as to establish phenotypes in disease modeling or toxicity studies. Optical-flow based analysis of videomicroscopic recordings offer a manipulation-free and efficient characterization of contractile cycles, an important characteristics of cardiomyocyte phenotype. We demonstrate that by appropriate computational analysis of optical flow data one can identify distinct contractile centers and distinguish active cell contractility from passive elastic tissue deformations. Our proposed convergence measure correlates with myosin IIa immuno-localization and is capable to resolve contractile waves and their synchronization within maturing, unlabeled induced pluripotent stem cell-derived cardiomyocyte cultures.

摘要

对心肌细胞跳动模式的特征进行描述,这不仅是对拟用于外科注射的细胞进行质量控制所必需的,也是在疾病建模或毒性研究中建立表型所必需的。基于光流的视频显微镜记录分析提供了一种无需操作且高效的收缩周期特征描述方法,而收缩周期是心肌细胞表型的一个重要特征。我们证明,通过对光流数据进行适当的计算分析,可以识别出不同的收缩中心,并将活跃的细胞收缩与被动的弹性组织变形区分开来。我们提出的收敛度量与肌球蛋白 IIa 的免疫定位相关,能够解析成熟的、未标记的诱导多能干细胞衍生的心肌细胞培养物中的收缩波及其同步性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2668/5583397/b55591b7ede8/41598_2017_10094_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验