Suppr超能文献

患者运动特征及其对CBCT图像质量和可解读性的影响。

Patient movement characteristics and the impact on CBCT image quality and interpretability.

作者信息

Spin-Neto Rubens, Costa Cláudio, Salgado Daniela Mra, Zambrana Nataly Rm, Gotfredsen Erik, Wenzel Ann

机构信息

Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark.

Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil.

出版信息

Dentomaxillofac Radiol. 2018 Jan;47(1):20170216. doi: 10.1259/dmfr.20170216. Epub 2017 Oct 20.

Abstract

OBJECTIVES

To assess the impact of patient movement characteristics and metal/radiopaque materials in the field-of-view (FOV) on CBCT image quality and interpretability.

METHODS

162 CBCT examinations were performed in 134 consecutive (i.e. prospective data collection) patients (age average: 27.2 years; range: 9-73). An accelerometer-gyroscope system registered patient's head position during examination. The threshold for movement definition was set at ≥0.5-mm movement distance based on accelerometer-gyroscope recording. Movement complexity was defined as uniplanar/multiplanar. Three observers scored independently: presence of stripe (i.e. streak) artefacts (absent/"enamel stripes"/"metal stripes"/"movement stripes"), overall unsharpness (absent/present) and image interpretability (interpretable/not interpretable). Kappa statistics assessed interobserver agreement. χ tests analysed whether movement distance, movement complexity and metal/radiopaque material in the FOV affected image quality and image interpretability. Relevant risk factors (p ≤ 0.20) were entered into a multivariate logistic regression analysis with "not interpretable" as the outcome.

RESULTS

Interobserver agreement for image interpretability was good (average = 0.65). Movement distance and presence of metal/radiopaque materials significantly affected image quality and interpretability. There were 22-28 cases, in which the observers stated the image was not interpretable. Small movements (i.e. <3 mm) did not significantly affect image interpretability. For movements ≥ 3 mm, the risk that a case was scored as "not interpretable" was significantly (p ≤ 0.05) increased [OR 3.2-11.3; 95% CI (0.70-65.47)]. Metal/radiopaque material was also a significant (p ≤ 0.05) risk factor (OR 3.61-5.05).

CONCLUSIONS

Patient movement ≥3 mm and metal/radiopaque material in the FOV significantly affected CBCT image quality and interpretability.

摘要

目的

评估患者运动特征以及视野(FOV)内的金属/不透射线材料对锥束计算机断层扫描(CBCT)图像质量和可解读性的影响。

方法

对134例连续患者(即前瞻性数据收集)进行了162次CBCT检查(平均年龄:27.2岁;范围:9 - 73岁)。一个加速度计 - 陀螺仪系统在检查期间记录患者头部位置。基于加速度计 - 陀螺仪记录,将运动定义的阈值设定为≥0.5毫米的运动距离。运动复杂性定义为单平面/多平面。三名观察者独立评分:条纹(即伪影)的存在情况(无/“釉质条纹”/“金属条纹”/“运动条纹”)、整体锐度(无/有)以及图像可解读性(可解读/不可解读)。Kappa统计量评估观察者间的一致性。χ检验分析运动距离、运动复杂性以及FOV内的金属/不透射线材料是否影响图像质量和图像可解读性。将相关风险因素(p≤0.20)纳入以“不可解读”为结果的多因素逻辑回归分析。

结果

观察者间在图像可解读性方面的一致性良好(平均值 = 0.65)。运动距离和金属/不透射线材料的存在显著影响图像质量和可解读性。有22 - 28例病例,观察者表示图像不可解读。小幅度运动(即<3毫米)对图像可解读性无显著影响。对于≥3毫米的运动,病例被评为“不可解读”的风险显著增加(p≤0.05)[比值比(OR)3.2 - 11.3;95%置信区间(0.70 - 65.47)]。金属/不透射线材料也是一个显著的(p≤0.

相似文献

1
Patient movement characteristics and the impact on CBCT image quality and interpretability.
Dentomaxillofac Radiol. 2018 Jan;47(1):20170216. doi: 10.1259/dmfr.20170216. Epub 2017 Oct 20.
2
An ex vivo study of automated motion artefact correction and the impact on cone beam CT image quality and interpretability.
Dentomaxillofac Radiol. 2018 Jul;47(5):20180013. doi: 10.1259/dmfr.20180013. Epub 2018 Mar 22.
3
Movement characteristics in young patients and the impact on CBCT image quality.
Dentomaxillofac Radiol. 2016;45(4):20150426. doi: 10.1259/dmfr.20150426. Epub 2016 Feb 26.
4
Detection of patient movement during CBCT examination using video observation compared with an accelerometer-gyroscope tracking system.
Dentomaxillofac Radiol. 2017 Feb;46(2):20160289. doi: 10.1259/dmfr.20160289. Epub 2016 Oct 27.
6
Effect of patient anxiety on image motion artefacts in CBCT.
BMC Oral Health. 2017 Apr 4;17(1):73. doi: 10.1186/s12903-017-0367-4.
7
Head motion and perception of discomfort by young children during simulated CBCT examinations.
Dentomaxillofac Radiol. 2021 Mar 1;50(3):20200445. doi: 10.1259/dmfr.20200445. Epub 2020 Oct 30.
9
Radiographic observers' ability to recognize patient movement during cone beam CT.
Dentomaxillofac Radiol. 2014;43(4):20130449. doi: 10.1259/dmfr.20130449. Epub 2014 Feb 26.
10
Impact of metal artefacts on subjective perception of image quality of 13 CBCT devices.
Clin Oral Investig. 2022 Jun;26(6):4457-4466. doi: 10.1007/s00784-022-04409-w. Epub 2022 Feb 15.

引用本文的文献

1
[A segmented backprojection tensor degradation feature encoding model for motion artifacts correction in dental cone beam computed tomography].
Nan Fang Yi Ke Da Xue Xue Bao. 2025 Feb 20;45(2):422-436. doi: 10.12122/j.issn.1673-4254.2025.02.23.
3
Applications of Multimodal Artificial Intelligence in Non-Hodgkin Lymphoma B Cells.
Biomedicines. 2024 Aug 5;12(8):1753. doi: 10.3390/biomedicines12081753.
4
[A deep blur learning-based motion artifact reduction algorithm for dental cone-beam computed tomography images].
Nan Fang Yi Ke Da Xue Xue Bao. 2024 Jun 20;44(6):1198-1208. doi: 10.12122/j.issn.1673-4254.2024.06.22.
5
Novel AI-based tool for primary tooth segmentation on CBCT using convolutional neural networks: A validation study.
Int J Paediatr Dent. 2025 Jan;35(1):97-107. doi: 10.1111/ipd.13204. Epub 2024 May 20.
6
The problem in visualization and measuring tiny structures on CBCT-images.
J Orofac Orthop. 2023 Sep;84(5):340-341. doi: 10.1007/s00056-023-00477-z.
7
Effect of a Motion Artifact Correction System on Cone-Beam Computed Tomography Image Characteristics.
Cureus. 2023 Feb 15;15(2):e35016. doi: 10.7759/cureus.35016. eCollection 2023 Feb.
9
The Effect of Mandibular Angulation on Preoperative Assessment of Dental Implant Insertion at Premolar Region: CBCT Study.
Biomed Res Int. 2022 May 28;2022:7879239. doi: 10.1155/2022/7879239. eCollection 2022.
10
Head motion and perception of discomfort by young children during simulated CBCT examinations.
Dentomaxillofac Radiol. 2021 Mar 1;50(3):20200445. doi: 10.1259/dmfr.20200445. Epub 2020 Oct 30.

本文引用的文献

1
Accuracy of video observation and a three-dimensional head tracking system for detecting and quantifying robot-simulated head movements in cone beam computed tomography.
Oral Surg Oral Med Oral Pathol Oral Radiol. 2017 Jun;123(6):721-728. doi: 10.1016/j.oooo.2017.02.010. Epub 2017 Feb 28.
2
Detection of patient movement during CBCT examination using video observation compared with an accelerometer-gyroscope tracking system.
Dentomaxillofac Radiol. 2017 Feb;46(2):20160289. doi: 10.1259/dmfr.20160289. Epub 2016 Oct 27.
3
Patient movement and motion artefacts in cone beam computed tomography of the dentomaxillofacial region: a systematic literature review.
Oral Surg Oral Med Oral Pathol Oral Radiol. 2016 Apr;121(4):425-33. doi: 10.1016/j.oooo.2015.11.019. Epub 2015 Dec 19.
4
Suitability of Smartphone Inertial Sensors for Real-Time Biofeedback Applications.
Sensors (Basel). 2016 Feb 27;16(3):301. doi: 10.3390/s16030301.
5
Movement characteristics in young patients and the impact on CBCT image quality.
Dentomaxillofac Radiol. 2016;45(4):20150426. doi: 10.1259/dmfr.20150426. Epub 2016 Feb 26.
6
Motion artefacts in cone beam CT: an in vitro study about the effects on the images.
Br J Radiol. 2016;89(1058):20150687. doi: 10.1259/bjr.20150687. Epub 2015 Nov 18.
7
Factors affecting patient movement and re-exposure in cone beam computed tomography examination.
Oral Surg Oral Med Oral Pathol Oral Radiol. 2015 May;119(5):572-8. doi: 10.1016/j.oooo.2015.01.011. Epub 2015 Feb 3.
8
Automated detection of patient movement during a CBCT scan based on the projection data.
Oral Surg Oral Med Oral Pathol Oral Radiol. 2015 Apr;119(4):468-72. doi: 10.1016/j.oooo.2014.12.008. Epub 2014 Dec 23.
9
Metal and motion artifacts by cone beam computed tomography (CBCT) in dental and maxillofacial study.
Radiol Med. 2015 Jul;120(7):618-26. doi: 10.1007/s11547-015-0496-2. Epub 2015 Jan 30.
10
Spatial resolution in CBCT machines for dental/maxillofacial applications-what do we know today?
Dentomaxillofac Radiol. 2015;44(1):20140204. doi: 10.1259/dmfr.20140204.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验