Lu Minggen, Li Chin-Shang
School of Community Health Sciences, University of Nevada, Reno, NV, U.S.A.
Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, CA, U.S.A.
Stat Med. 2017 Dec 30;36(30):4893-4907. doi: 10.1002/sim.7489. Epub 2017 Sep 5.
We provide a simple and practical, yet flexible, penalized estimation method for a Cox proportional hazards model with current status data. We approximate the baseline cumulative hazard function by monotone B-splines and use a hybrid approach based on the Fisher-scoring algorithm and the isotonic regression to compute the penalized estimates. We show that the penalized estimator of the nonparametric component achieves the optimal rate of convergence under some smooth conditions and that the estimators of the regression parameters are asymptotically normal and efficient. Moreover, a simple variance estimation method is considered for inference on the regression parameters. We perform 2 extensive Monte Carlo studies to evaluate the finite-sample performance of the penalized approach and compare it with the 3 competing R packages: C1.coxph, intcox, and ICsurv. A goodness-of-fit test and model diagnostics are also discussed. The methodology is illustrated with 2 real applications.
我们为具有当前状态数据的Cox比例风险模型提供了一种简单实用且灵活的惩罚估计方法。我们通过单调B样条近似基线累积风险函数,并使用基于Fisher评分算法和保序回归的混合方法来计算惩罚估计值。我们表明,在某些光滑条件下,非参数分量的惩罚估计器达到了最优收敛速度,并且回归参数的估计器是渐近正态且有效的。此外,还考虑了一种简单的方差估计方法用于对回归参数进行推断。我们进行了两项广泛的蒙特卡罗研究,以评估惩罚方法的有限样本性能,并将其与三个竞争的R包:C1.coxph、intcox和ICsurv进行比较。还讨论了拟合优度检验和模型诊断。通过两个实际应用对该方法进行了说明。