Suppr超能文献

适用于瞬时失效的区间删失数据的扩展比例风险模型。

An extended proportional hazards model for interval-censored data subject to instantaneous failures.

机构信息

Department of Mathematics & Statistics, James Madison University, Harrisonburg, VA, 22807, USA.

Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.

出版信息

Lifetime Data Anal. 2020 Jan;26(1):158-182. doi: 10.1007/s10985-019-09467-z. Epub 2019 Feb 23.

Abstract

The proportional hazards (PH) model is arguably one of the most popular models used to analyze time to event data arising from clinical trials and longitudinal studies. In many such studies, the event time is not directly observed but is known relative to periodic examination times; i.e., practitioners observe either current status or interval-censored data. The analysis of data of this structure is often fraught with many difficulties since the event time of interest is unobserved. Further exacerbating this issue, in some such studies the observed data also consists of instantaneous failures; i.e., the event times for several study units coincide exactly with the time at which the study begins. In light of these difficulties, this work focuses on developing a mixture model, under the PH assumptions, which can be used to analyze interval-censored data subject to instantaneous failures. To allow for modeling flexibility, two methods of estimating the unknown cumulative baseline hazard function are proposed; a fully parametric and a monotone spline representation are considered. Through a novel data augmentation procedure involving latent Poisson random variables, an expectation-maximization (EM) algorithm is developed to complete model fitting. The resulting EM algorithm is easy to implement and is computationally efficient. Moreover, through extensive simulation studies the proposed approach is shown to provide both reliable estimation and inference. The motivation for this work arises from a randomized clinical trial aimed at assessing the effectiveness of a new peanut allergen treatment in attaining sustained unresponsiveness in children.

摘要

比例风险(PH)模型可以说是用于分析临床试验和纵向研究中产生的时间事件数据的最流行模型之一。在许多此类研究中,事件时间不是直接观察到的,而是相对于定期检查时间可知的;即,医生观察当前状态或区间删失数据。由于感兴趣的事件时间未被观察到,因此分析这种结构的数据通常充满了许多困难。进一步加剧这个问题的是,在某些此类研究中,观察到的数据也包括瞬时失效;即,几个研究单位的事件时间正好与研究开始的时间重合。鉴于这些困难,这项工作侧重于开发一种混合模型,在 PH 假设下,可以用于分析存在瞬时失效的区间删失数据。为了允许建模灵活性,提出了两种估计未知累积基线风险函数的方法;考虑了完全参数和单调样条表示。通过涉及潜在泊松随机变量的新颖数据增强过程,开发了期望最大化(EM)算法来完成模型拟合。所得到的 EM 算法易于实现且计算效率高。此外,通过广泛的模拟研究表明,所提出的方法既可以提供可靠的估计,也可以提供可靠的推断。这项工作的动机源于一项旨在评估新花生过敏原治疗在儿童中实现持续无反应效果的随机临床试验。

相似文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验