Department of Theoretical Biophysics, Max Planck Institute of Biophysics , Max-von-Laue Str. 3, 60438 Frankfurt am Main, Germany.
Institute for Biophysics, Goethe University Frankfurt , 60438 Frankfurt am Main, Germany.
ACS Nano. 2017 Sep 26;11(9):9558-9565. doi: 10.1021/acsnano.7b05542. Epub 2017 Sep 8.
Lipid membrane nanotubes are abundant in living cells, even though tubules are energetically less stable than sheet-like structures. According to membrane elastic theory, the tubular endoplasmic reticulum (ER), with its high area-to-volume ratio, appears to be particularly unstable. We explore how tubular membrane structures can nevertheless be induced and why they persist. In Monte Carlo simulations of a fluid-elastic membrane model subject to thermal fluctuations and without constraints on symmetry, we find that a steady increase in the area-to-volume ratio readily induces tubular structures. In simulations mimicking the ER wrapped around the cell nucleus, tubules emerge naturally as the membrane area increases. Once formed, a high energy barrier separates tubules from the thermodynamically favored sheet-like membrane structures. Remarkably, this barrier persists even at large area-to-volume ratios, protecting tubules against shape transformations despite enormous driving forces toward sheet-like structures. Molecular dynamics simulations of a molecular membrane model confirm the metastability of tubular structures. Volume reduction by osmotic regulation and membrane area growth by lipid production and by fusion of small vesicles emerge as powerful factors in the induction and stabilization of tubular membrane structures.
脂质膜纳米管在活细胞中很丰富,尽管管状结构的能量稳定性不如片状结构。根据膜弹性理论,具有高面积/体积比的管状内质网(ER)似乎特别不稳定。我们探讨了管状膜结构如何能够被诱导以及为什么它们能够持续存在。在对受热波动影响且不受对称约束的流体弹性膜模型进行的蒙特卡罗模拟中,我们发现,面积/体积比的稳定增加很容易诱导管状结构。在模拟 ER 缠绕在细胞核周围的过程中,随着膜面积的增加,管状结构自然出现。一旦形成,一个高能量势垒将管状结构与热力学上有利的片状膜结构分隔开来。值得注意的是,即使在大的面积/体积比下,这个势垒仍然存在,尽管向片状结构的驱动力非常大,但它仍然能够保护管状结构不发生形状转变。分子膜模型的分子动力学模拟证实了管状结构的亚稳性。渗透调节导致的体积减小以及通过脂质产生和小泡融合导致的膜面积增大,是诱导和稳定管状膜结构的有力因素。