Suppr超能文献

DeepPep:基于肽谱的深度蛋白质组推断。

DeepPep: Deep proteome inference from peptide profiles.

作者信息

Kim Minseung, Eetemadi Ameen, Tagkopoulos Ilias

机构信息

Department of Computer Science, University of California, Davis, Davis, California, United States of America.

Genome Center, University of California, Davis, Davis, California, United States of America.

出版信息

PLoS Comput Biol. 2017 Sep 5;13(9):e1005661. doi: 10.1371/journal.pcbi.1005661. eCollection 2017 Sep.

Abstract

Protein inference, the identification of the protein set that is the origin of a given peptide profile, is a fundamental challenge in proteomics. We present DeepPep, a deep-convolutional neural network framework that predicts the protein set from a proteomics mixture, given the sequence universe of possible proteins and a target peptide profile. In its core, DeepPep quantifies the change in probabilistic score of peptide-spectrum matches in the presence or absence of a specific protein, hence selecting as candidate proteins with the largest impact to the peptide profile. Application of the method across datasets argues for its competitive predictive ability (AUC of 0.80±0.18, AUPR of 0.84±0.28) in inferring proteins without need of peptide detectability on which the most competitive methods rely. We find that the convolutional neural network architecture outperforms the traditional artificial neural network architectures without convolution layers in protein inference. We expect that similar deep learning architectures that allow learning nonlinear patterns can be further extended to problems in metagenome profiling and cell type inference. The source code of DeepPep and the benchmark datasets used in this study are available at https://deeppep.github.io/DeepPep/.

摘要

蛋白质推断,即确定给定肽谱起源的蛋白质集,是蛋白质组学中的一项基本挑战。我们提出了DeepPep,这是一种深度卷积神经网络框架,在给定可能蛋白质的序列全集和目标肽谱的情况下,可从蛋白质组混合物中预测蛋白质集。DeepPep的核心是量化在存在或不存在特定蛋白质时肽谱匹配概率得分的变化,从而选择对肽谱影响最大的候选蛋白质。该方法在多个数据集上的应用表明,其在推断蛋白质方面具有竞争性的预测能力(曲线下面积为0.80±0.18,精确率-召回率曲线下面积为0.84±0.28),无需依赖最具竞争力的方法所依赖的肽可检测性。我们发现,在蛋白质推断中,卷积神经网络架构优于没有卷积层的传统人工神经网络架构。我们期望类似的能够学习非线性模式的深度学习架构可以进一步扩展到宏基因组分析和细胞类型推断等问题。DeepPep的源代码以及本研究中使用的基准数据集可在https://deeppep.github.io/DeepPep/获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6de8/5600403/5c039d43c92c/pcbi.1005661.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验