Suppr超能文献

了解活性位点通道周围残基对从根癌土壤杆菌5A生成葡萄糖耐受型β-葡萄糖苷酶的作用。

Understanding the role of residues around the active site tunnel towards generating a glucose-tolerant β-glucosidase from Agrobacterium tumefaciens 5A.

作者信息

Goswami Shubhasish, Das Shibashis, Datta Supratim

机构信息

Protein Engineering Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Mohanpur 741246, India.

Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India.

出版信息

Protein Eng Des Sel. 2017 Jul 1;30(7):523-530. doi: 10.1093/protein/gzx039.

Abstract

Most β-glucosidases are subjected to inhibition by the final hydrolysis product glucose resulting in the accumulation of cellobiose and oligosaccharides. This accumulated cellobiose and oligosaccharides further inhibit the activities of endoglucanase and cellobiohydrolases, resulting in the inhibition of cellulose degradation and a more expensive biofuel. To elucidate the mechanism(s) of glucose tolerance, we designed and characterised six mutations of a moderately glucose-tolerant β-glucosidase (H0HC94) from the mesophilic bacterium Agrobacterium tumefaciens 5A. The hydrophobicity and steric were varied across non-conserved residues in specific regions of the active site tunnel. In contrast to the uncompetitive inhibition of WT enzyme by glucose, C174V and H229S are competitively inhibited pointing towards a possible glucose-binding site in the protein at these positions. Increasing hydrophobicity at the +1 subsite and increasing hydrophobicity and steric at +2 subsites seemed to be critical for glucose tolerance for this BG. Additionally, in L178E, specific activity was 1.8 times higher on the natural substrate cellobiose while both W127F and L178E mutants showed an enhancement in thermostability. The kinetic stability of W127F, V176A, L178A and L178E also increased between 2- and 3-folds compared to WT. Our results indicate that while the structure between subsites +1 and +2 is critical for the glucose tolerance, the specific residues may not be identical across such enzymes.

摘要

大多数β-葡萄糖苷酶会受到最终水解产物葡萄糖的抑制,导致纤维二糖和寡糖积累。这些积累的纤维二糖和寡糖会进一步抑制内切葡聚糖酶和纤维二糖水解酶的活性,从而抑制纤维素降解,并使生物燃料成本更高。为了阐明葡萄糖耐受性的机制,我们设计并表征了来自嗜温细菌根癌土壤杆菌5A的一种中度葡萄糖耐受性β-葡萄糖苷酶(H0HC94)的六个突变体。活性位点通道特定区域的非保守残基的疏水性和空间结构各不相同。与野生型酶被葡萄糖非竞争性抑制不同,C174V和H229S受到竞争性抑制,表明在这些位置的蛋白质中可能存在葡萄糖结合位点。在 +1 亚位点增加疏水性以及在 +2 亚位点增加疏水性和空间结构似乎对这种β-葡萄糖苷酶的葡萄糖耐受性至关重要。此外,在L178E中,对天然底物纤维二糖的比活性高出1.8倍,而W127F和L178E突变体的热稳定性均有所提高。与野生型相比,W127F、V176A、L178A和L178E的动力学稳定性也提高了2至3倍。我们的结果表明,虽然 +1 和 +2 亚位点之间的结构对葡萄糖耐受性至关重要,但不同酶的特定残基可能并不相同。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验