Suppr超能文献

自陈式评估捕捉到 27 种不同类别的情绪,这些情绪由连续的梯度连接。

Self-report captures 27 distinct categories of emotion bridged by continuous gradients.

机构信息

Berkeley Social Interaction Laboratory, Department of Psychology, University of California, Berkeley, CA 94720

Berkeley Social Interaction Laboratory, Department of Psychology, University of California, Berkeley, CA 94720.

出版信息

Proc Natl Acad Sci U S A. 2017 Sep 19;114(38):E7900-E7909. doi: 10.1073/pnas.1702247114. Epub 2017 Sep 5.

Abstract

Emotions are centered in subjective experiences that people represent, in part, with hundreds, if not thousands, of semantic terms. Claims about the distribution of reported emotional states and the boundaries between emotion categories-that is, the geometric organization of the semantic space of emotion-have sparked intense debate. Here we introduce a conceptual framework to analyze reported emotional states elicited by 2,185 short videos, examining the richest array of reported emotional experiences studied to date and the extent to which reported experiences of emotion are structured by discrete and dimensional geometries. Across self-report methods, we find that the videos reliably elicit 27 distinct varieties of reported emotional experience. Further analyses revealed that categorical labels such as amusement better capture reports of subjective experience than commonly measured affective dimensions (e.g., valence and arousal). Although reported emotional experiences are represented within a semantic space best captured by categorical labels, the boundaries between categories of emotion are fuzzy rather than discrete. By analyzing the distribution of reported emotional states we uncover gradients of emotion-from anxiety to fear to horror to disgust, calmness to aesthetic appreciation to awe, and others-that correspond to smooth variation in affective dimensions such as valence and dominance. Reported emotional states occupy a complex, high-dimensional categorical space. In addition, our library of videos and an interactive map of the emotional states they elicit (https://s3-us-west-1.amazonaws.com/emogifs/map.html) are made available to advance the science of emotion.

摘要

情绪集中在人们所代表的主观体验中,其中部分是用数百个(如果不是数千个的话)语义术语来代表的。关于报告的情绪状态的分布和情绪类别之间的边界的说法——即情绪语义空间的几何结构——引发了激烈的争论。在这里,我们引入了一个概念框架来分析由 2185 个短视频引发的报告情绪状态,考察了迄今为止研究的最丰富的报告情绪体验阵列,以及报告的情绪体验在多大程度上受到离散和维度几何结构的影响。通过自我报告方法,我们发现这些视频可靠地引发了 27 种不同的报告情绪体验。进一步的分析表明,诸如“娱乐”之类的类别标签比通常测量的情感维度(如效价和唤醒度)更能捕捉到主观体验的报告。尽管报告的情绪体验是在一个最好用类别标签来捕捉的语义空间中呈现的,但情绪类别的边界是模糊的,而不是离散的。通过分析报告情绪状态的分布,我们发现了从焦虑到恐惧到恐惧到厌恶,从平静到审美欣赏到敬畏,以及其他的情绪梯度,这些梯度与效价和主导等情感维度的平滑变化相对应。报告的情绪状态占据了一个复杂的、高维的类别空间。此外,我们的视频库以及它们引发的情绪状态的交互式地图(https://s3-us-west-1.amazonaws.com/emogifs/map.html)可供使用,以推进情感科学的发展。

相似文献

2
The representation of emotional experience from imagined scenarios.想象场景中的情感体验表现。
Emotion. 2023 Sep;23(6):1670-1686. doi: 10.1037/emo0001192. Epub 2022 Nov 17.
4
Mapping 24 emotions conveyed by brief human vocalization.人类短暂发声所传达的 24 种情绪的映射。
Am Psychol. 2019 Sep;74(6):698-712. doi: 10.1037/amp0000399. Epub 2018 Dec 20.

引用本文的文献

3
Cerebral topographies of perceived and felt emotions.感知情绪和感受情绪的脑地形图。
Imaging Neurosci (Camb). 2025 Mar 27;3. doi: 10.1162/imag_a_00517. eCollection 2025.
5
The construction of emotional meaning in language.语言中情感意义的构建。
Commun Psychol. 2025 Jul 7;3(1):99. doi: 10.1038/s44271-025-00255-0.

本文引用的文献

3
A higher-order theory of emotional consciousness.情绪意识的高阶理论。
Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):E2016-E2025. doi: 10.1073/pnas.1619316114. Epub 2017 Feb 15.
5
What We Talk About When We Talk About Emotions.当我们谈论情绪时,我们在谈论什么。
Cell. 2016 Dec 1;167(6):1443-1445. doi: 10.1016/j.cell.2016.11.029.
8
Decoding the Nature of Emotion in the Brain.解码大脑中的情绪本质。
Trends Cogn Sci. 2016 Jun;20(6):444-455. doi: 10.1016/j.tics.2016.03.011. Epub 2016 Apr 25.
9
What Scientists Who Study Emotion Agree About.情绪研究科学家的共识
Perspect Psychol Sci. 2016 Jan;11(1):31-4. doi: 10.1177/1745691615596992.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验