Department of Chemistry and Biochemistry, The Molecular Biology Institute, University of California, Los Angeles, CA 90095.
Department of Chemistry and Biochemistry, The Molecular Biology Institute, University of California, Los Angeles, CA 90095
Proc Natl Acad Sci U S A. 2017 Sep 19;114(38):10101-10106. doi: 10.1073/pnas.1706978114. Epub 2017 Sep 5.
Arginine methylation on histones is a central player in epigenetics and in gene activation and repression. Protein arginine methyltransferase (PRMT) activity has been implicated in stem cell pluripotency, cancer metastasis, and tumorigenesis. The expression of one of the nine mammalian PRMTs, PRMT5, affects the levels of symmetric dimethylarginine (SDMA) at Arg-3 on histone H4, leading to the repression of genes which are related to disease progression in lymphoma and leukemia. Another PRMT, PRMT7, also affects SDMA levels at the same site despite its unique monomethylating activity and the lack of any evidence for PRMT7-catalyzed histone H4 Arg-3 methylation. We present evidence that PRMT7-mediated monomethylation of histone H4 Arg-17 regulates PRMT5 activity at Arg-3 in the same protein. We analyzed the kinetics of PRMT5 over a wide range of substrate concentrations. Significantly, we discovered that PRMT5 displays positive cooperativity in vitro, suggesting that this enzyme may be allosterically regulated in vivo as well. Most interestingly, monomethylation at Arg-17 in histone H4 not only raised the general activity of PRMT5 with this substrate, but also ameliorated the low activity of PRMT5 at low substrate concentrations. These kinetic studies suggest a biochemical explanation for the interplay between PRMT5- and PRMT7-mediated methylation of the same substrate at different residues and also suggest a general model for regulation of PRMTs. Elucidating the exact relationship between these two enzymes when they methylate two distinct sites of the same substrate may aid in developing therapeutics aimed at reducing PRMT5/7 activity in cancer and other diseases.
精氨酸的组蛋白甲基化是表观遗传学和基因激活及抑制的核心。蛋白质精氨酸甲基转移酶(PRMT)的活性与干细胞多能性、癌症转移和肿瘤发生有关。九种哺乳动物 PRMT 之一 PRMT5 的表达会影响组蛋白 H4 精氨酸 3 上对称二甲基精氨酸(SDMA)的水平,从而抑制与淋巴瘤和白血病疾病进展相关的基因。另一种 PRMT,PRMT7,尽管具有独特的单甲基化活性,并且没有任何证据表明 PRMT7 催化组蛋白 H4 精氨酸 3 甲基化,但它也会影响同一部位的 SDMA 水平。我们提供的证据表明,PRMT7 介导的组蛋白 H4 精氨酸 17 的单甲基化调节了同一蛋白中 PRMT5 精氨酸 3 的活性。我们分析了 PRMT5 在广泛的底物浓度范围内的动力学。重要的是,我们发现 PRMT5 在体外表现出正协同性,这表明该酶在体内也可能受到变构调节。最有趣的是,组蛋白 H4 精氨酸 17 的单甲基化不仅提高了 PRMT5 对该底物的总体活性,而且还改善了 PRMT5 在低底物浓度下的低活性。这些动力学研究为 PRMT5-和 PRMT7-介导的同一底物不同残基的甲基化之间的相互作用提供了生化解释,也为 PRMT 调节提供了一个一般模型。阐明当这两种酶在同一底物的两个不同位点甲基化时的确切关系,可能有助于开发旨在降低癌症和其他疾病中 PRMT5/7 活性的治疗方法。