Suppr超能文献

蛋白质精氨酸甲基转移酶1的寡聚化及其对底物精氨酸甲基化的功能影响。

Oligomerization of protein arginine methyltransferase 1 and its functional impact on substrate arginine methylation.

作者信息

Dang Tran, EswarKumar Nadendla, Tripathi Sunil Kumar, Yan Chunli, Wang Chun-Hsiung, Cao Mengtong, Paul Tanmoy Kumar, Agboluaje Elizabeth Oladoyin, Xiong May P, Ivanov Ivaylo, Ho Meng-Chiao, Zheng Y George

机构信息

Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, United States.

Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.

出版信息

J Biol Chem. 2024 Dec;300(12):107947. doi: 10.1016/j.jbc.2024.107947. Epub 2024 Nov 2.

Abstract

Protein arginine methyltransferases (PRMTs) are important posttranslational modifying enzymes in eukaryotic proteins and regulate diverse pathways from gene transcription, RNA splicing, and signal transduction to metabolism. Increasing evidence supports that PRMTs exhibit the capacity to form higher-order oligomeric structures, but the structural basis of PRMT oligomerization and its functional consequence are elusive. Herein, we revealed for the first time different oligomeric structural forms of the predominant arginine methyltransferase PRMT1 using cryo-EM, which included tetramer (dimer of dimers), hexamer (trimer of dimers), octamer (tetramer of dimers), decamer (pentamer of dimers), and also helical filaments. Through a host of biochemical assays, we showed that PRMT1 methyltransferase activity was substantially enhanced as a result of the high-ordered oligomerization. High-ordered oligomerization increased the catalytic turnover and the multimethylation processivity of PRMT1. Presence of a catalytically dead PRMT1 mutant also enhanced the activity of WT PRMT1, pointing out a noncatalytic role of oligomerization. Structural modeling demonstrates that oligomerization enhances substrate retention at the PRMT1 surface through electrostatic force. Our studies offered key insights into PRMT1 oligomerization and established that oligomerization constitutes a novel molecular mechanism that positively regulates the enzymatic activity of PRMTs in biology.

摘要

蛋白质精氨酸甲基转移酶(PRMTs)是真核生物蛋白质中重要的翻译后修饰酶,可调节从基因转录、RNA剪接、信号转导到代谢等多种途径。越来越多的证据支持PRMTs具有形成高阶寡聚结构的能力,但PRMT寡聚化的结构基础及其功能后果仍不清楚。在此,我们首次使用冷冻电镜揭示了主要的精氨酸甲基转移酶PRMT1的不同寡聚结构形式,包括四聚体(二聚体的二聚体)、六聚体(二聚体的三聚体)、八聚体(二聚体的四聚体)、十聚体(二聚体的五聚体)以及螺旋丝。通过一系列生化分析,我们表明PRMT1的甲基转移酶活性由于高阶寡聚化而显著增强。高阶寡聚化增加了PRMT1的催化周转率和多甲基化持续性。催化失活的PRMT1突变体的存在也增强了野生型PRMT1的活性,指出了寡聚化的非催化作用。结构建模表明,寡聚化通过静电力增强了底物在PRMT1表面的保留。我们的研究为PRMT1寡聚化提供了关键见解,并确定寡聚化构成了一种新的分子机制,在生物学中正向调节PRMTs的酶活性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4412/11681865/04994bd39749/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验