Suppr超能文献

个体化精准肿瘤学中的表型驱动治疗:一次一个患者的临床决策指南。

Phenotype-driven precision oncology as a guide for clinical decisions one patient at a time.

机构信息

Genome Institute of Singapore, A*STAR, Cancer Therapeutics & Stratified Oncology, PerkinElmer-GIS Centre for Precision Oncology, 60 Biopolis Street, #02-01 Genome, Singapore, 138672, Singapore.

National Cancer Centre Singapore, Cancer Therapeutics Research Laboratory, 11 Hospital Drive, Singapore, 169610, Singapore.

出版信息

Nat Commun. 2017 Sep 5;8(1):435. doi: 10.1038/s41467-017-00451-5.

Abstract

Genomics-driven cancer therapeutics has gained prominence in personalized cancer treatment. However, its utility in indications lacking biomarker-driven treatment strategies remains limited. Here we present a "phenotype-driven precision-oncology" approach, based on the notion that biological response to perturbations, chemical or genetic, in ex vivo patient-individualized models can serve as predictive biomarkers for therapeutic response in the clinic. We generated a library of "screenable" patient-derived primary cultures (PDCs) for head and neck squamous cell carcinomas that reproducibly predicted treatment response in matched patient-derived-xenograft models. Importantly, PDCs could guide clinical practice and predict tumour progression in two n = 1 co-clinical trials. Comprehensive "-omics" interrogation of PDCs derived from one of these models revealed YAP1 as a putative biomarker for treatment response and survival in ~24% of oral squamous cell carcinoma. We envision that scaling of the proposed PDC approach could uncover biomarkers for therapeutic stratification and guide real-time therapeutic decisions in the future.Treatment response in patient-derived models may serve as a biomarker for response in the clinic. Here, the authors use paired patient-derived mouse xenografts and patient-derived primary culture models from head and neck squamous cell carcinomas, including metastasis, as models for high-throughput screening of anti-cancer drugs.

摘要

基于体外患者个体化模型中对化学或遗传扰动的生物学反应可以作为临床治疗反应的预测生物标志物的观点,我们提出了一种“表型驱动的精准肿瘤学”方法。我们生成了一个用于头颈部鳞状细胞癌的“可筛选”患者来源的原代培养物 (PDC) 文库,这些文库在匹配的患者来源异种移植模型中可重现地预测治疗反应。重要的是,PDC 可指导临床实践并预测两项 n = 1 合作临床试验中的肿瘤进展。对其中一个模型衍生的 PDC 进行的全面“组学”分析揭示了 YAP1 作为约 24%的口腔鳞状细胞癌治疗反应和生存的潜在生物标志物。我们设想,所提出的 PDC 方法的扩展可以发现治疗分层的生物标志物,并在未来指导实时治疗决策。

患者来源模型中的治疗反应可作为临床反应的生物标志物。在这里,作者使用头颈部鳞状细胞癌包括转移的配对患者来源的小鼠异种移植和患者来源的原代培养模型作为抗癌药物高通量筛选的模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a620/5585361/5c3642c1c09b/41467_2017_451_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验