Chia Shumei, Wen Seow Justine Jia, Peres da Silva Rafael, Suphavilai Chayaporn, Shirgaonkar Niranjan, Murata-Hori Maki, Zhang Xiaoqian, Yong Elena Yaqing, Pan Jiajia, Thangavelu Matan Thangavelu, Periyasamy Giridharan, Yap Aixin, Anand Padmaja, Muliaditan Daniel, Chan Yun Shen, Siyu Wang, Yong Chua Wei, Hong Nguyen, Ran Gao, Sim Ngak Leng, Guo Yu Amanda, Yi Teh Andrea Xin, Wei Ling Clarinda Chua, Wei Tan Emile Kwong, Pei Cherylin Fu Wan, Chang Meihuan, Han Shuting, Seow-En Isaac, Chen Hui Lionel Raphael, Hsia Gan Anna Hwee, Yap Choon Kong, Ng Huck Hui, Skanderup Anders Jacobsen, Chinswangwatanakul Vitoon, Riansuwan Woramin, Trakarnsanga Atthaphorn, Pithukpakorn Manop, Tanjak Pariyada, Chaiboonchoe Amphun, Park Daye, Kim Dong Keon, Iyer Narayanan Gopalakrishna, Tsantoulis Petros, Tejpar Sabine, Kim Jung Eun, Kim Tae Il, Sampattavanich Somponnat, Tan Iain Beehuat, Nagarajan Niranjan, DasGupta Ramanuj
Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore.
Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore.
Cell Rep Med. 2025 Apr 15;6(4):102053. doi: 10.1016/j.xcrm.2025.102053. Epub 2025 Apr 4.
Application of machine learning (ML) on cancer-specific pharmacogenomic datasets shows immense promise for identifying predictive response biomarkers to enable personalized treatment. We introduce CAN-Scan, a precision oncology platform, which applies ML on next-generation pharmacogenomic datasets generated from a freeze-viable biobank of patient-derived primary cell lines (PDCs). These PDCs are screened against 84 Food and Drug Administration (FDA)-approved drugs at clinically relevant doses (C), focusing on colorectal cancer (CRC) as a model system. CAN-Scan uncovers prognostic biomarkers and alternative treatment strategies, particularly for patients unresponsive to first-line chemotherapy. Specifically, it identifies gene expression signatures linked to resistance against 5-fluorouracil (5-FU)-based drugs and a focal copy-number gain on chromosome 7q, harboring critical resistance-associated genes. CAN-Scan-derived response signatures accurately predict clinical outcomes across four independent, ethnically diverse CRC cohorts. Notably, drug-specific ML models reveal regorafenib and vemurafenib as alternative treatments for BRAF-expressing, 5-FU-insensitive CRC. Altogether, this approach demonstrates significant potential in improving biomarker discovery and guiding personalized treatments.
将机器学习(ML)应用于癌症特异性药物基因组数据集,在识别预测反应生物标志物以实现个性化治疗方面显示出巨大前景。我们推出了CAN-Scan,这是一个精准肿瘤学平台,它将ML应用于从患者来源的原代细胞系(PDC)的冷冻保存生物样本库生成的下一代药物基因组数据集。这些PDC在临床相关剂量(C)下针对84种美国食品药品监督管理局(FDA)批准的药物进行筛选,以结直肠癌(CRC)作为模型系统。CAN-Scan揭示了预后生物标志物和替代治疗策略,特别是对于那些对一线化疗无反应的患者。具体而言,它识别出与对基于5-氟尿嘧啶(5-FU)的药物耐药相关的基因表达特征以及7号染色体q臂上的一个局部拷贝数增加,该区域包含关键的耐药相关基因。CAN-Scan得出的反应特征能够准确预测四个独立的、不同种族的CRC队列中的临床结果。值得注意的是,药物特异性ML模型显示瑞戈非尼和维莫非尼可作为表达BRAF、对5-FU不敏感的CRC的替代治疗方法。总之,这种方法在改善生物标志物发现和指导个性化治疗方面显示出巨大潜力。