Suppr超能文献

太赫兹波段基于石墨烯等离子体超表面对不同偏振反射波的调控。

Manipulating of Different-Polarized Reflected Waves with Graphene-based Plasmonic Metasurfaces in Terahertz Regime.

机构信息

Beijing Key Laboratory of Network System Architecture and Convergence, School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, P.O. Box. 282, 100876, Beijing, China.

Beijing Key Laboratory of Work Safety Intelligent Monitoring, School of Electronic Engineering, Beijing University of Posts and Telecommunications, P.O. Box. 282, 100876, Beijing, China.

出版信息

Sci Rep. 2017 Sep 5;7(1):10558. doi: 10.1038/s41598-017-10726-y.

Abstract

A graphene-based plasmonic metasurface which can independently control different polarized electromagnetic waves with reasonably small losses in terahertz regime is proposed and demonstrated in this paper. This metasurface is composed of graphene based elements. Owing to anisotropic plasmonic resonance of the graphene-based elements, the reflected phases and magnitudes of orthogonally polarized waves can be independently controlled by varying dimensions of the element. Four types of graphene-based plasmonic metasurfaces with different reflected phases distributions are synthesized and simulated, exhibiting diverse functions such as polarized beam splitting, beam deflection, and linear-to-circular polarization conversion. The simulation results demonstrate excellent performances as theoretical expectation. The proposed graphene-based plasmonic metasurface can be applied to realize extremely light-weight, ultra-compact, and high-performances electromagnetic structures for diverse terahertz applications.

摘要

本文提出并演示了一种基于石墨烯的等离子体超表面,它可以在太赫兹波段以较小的损耗独立控制不同偏振的电磁波。该超表面由基于石墨烯的单元组成。由于基于石墨烯的单元的各向异性等离子体共振,通过改变单元的尺寸可以独立控制正交偏振波的反射相位和幅度。合成并模拟了四种具有不同反射相位分布的基于石墨烯的等离子体超表面,展示了偏振光束分裂、光束偏转和线到圆偏振转换等多种功能。模拟结果与理论预期相符,表现出了优异的性能。所提出的基于石墨烯的等离子体超表面可用于实现超轻、超紧凑、高性能的太赫兹应用的电磁结构。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验