Suppr超能文献

RERT:一种预测子宫内膜癌患者宫外疾病的新回归树方法。

RERT: A Novel Regression Tree Approach to Predict Extrauterine Disease in Endometrial Carcinoma Patients.

机构信息

Department of Molecular and Translational Medicine, Unit of Biostatistics, University of Brescia, Brescia, Italy.

"Angelo Nocivelli" Institute of Molecular Medicine, Division of Obstetrics and Gynecology, University of Brescia, Brescia, Italy.

出版信息

Sci Rep. 2017 Sep 5;7(1):10528. doi: 10.1038/s41598-017-11104-4.

Abstract

Some aspects of endometrial cancer (EC) preoperative work-up are still controversial, and debatable are the roles played by lymphadenectomy and radical surgery. Proper preoperative EC staging can help design a tailored surgical treatment, and this study aims to propose a new algorithm able to predict extrauterine disease diffusion. 293 EC patients were consecutively enrolled, and age, BMI, children's number, menopausal status, contraception, hormone replacement therapy, hypertension, histological grading, clinical stage, and serum HE4 and CA125 values were preoperatively evaluated. In order to identify before surgery the most important variables able to classify EC patients based on FIGO stage, we adopted a new statistical approach consisting of two-steps: 1) Random Forest with its relative variable importance; 2) a novel algorithm able to select the most representative Regression Tree (RERT) from an ensemble method. RERT, built on the above mentioned variables, provided a sensitivity, specificity, NPV and PPV of 90%, 76%, 94% and 65% respectively, in predicting FIGO stage > I. Notably, RERT outperformed the prediction ability of HE4, CA125, Logistic Regression and single cross-validated Regression Tree. Such algorithm has great potential, since it better identifies the true early-stage patients, thus providing concrete support in the decisional process about therapeutic options to be performed.

摘要

子宫内膜癌(EC)术前检查的某些方面仍存在争议,淋巴结切除术和根治性手术的作用也存在争议。正确的术前 EC 分期有助于设计个体化的手术治疗,本研究旨在提出一种新的算法,以预测宫外疾病的扩散。连续纳入 293 例 EC 患者,术前评估年龄、BMI、儿童人数、绝经状态、避孕、激素替代疗法、高血压、组织学分级、临床分期以及血清 HE4 和 CA125 值。为了在术前识别出能够基于 FIGO 分期对 EC 患者进行分类的最重要变量,我们采用了一种新的统计方法,包括两步:1)随机森林及其相对重要性变量;2)一种能够从集成方法中选择最具代表性的回归树(RERT)的新算法。基于上述变量构建的 RERT 在预测 FIGO 分期 > I 方面的敏感性、特异性、NPV 和 PPV 分别为 90%、76%、94%和 65%。值得注意的是,RERT 的预测能力优于 HE4、CA125、Logistic 回归和单交叉验证回归树。该算法具有很大的潜力,因为它可以更好地识别真正的早期患者,从而为治疗方案的决策过程提供具体支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e418/5585365/a8a0695c4c80/41598_2017_11104_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验