Suppr超能文献

硅@碳化硅复合材料的简便合成及其作为锂离子电池阳极材料的应用。

Facile Synthesis of Si@SiC Composite as an Anode Material for Lithium-Ion Batteries.

机构信息

Department of Materials Science and Engineering, Chonnam National University , 77, Yongbongro, Bukgu, Gwangju 61186, South Korea.

School of Chemical Engineering, Hanoi University of Science and Technology , 1 Dai Co Viet, Hai Ba Trung, Hanoi 100000, Vietnam.

出版信息

ACS Appl Mater Interfaces. 2017 Sep 27;9(38):32790-32800. doi: 10.1021/acsami.7b10658. Epub 2017 Sep 18.

Abstract

Here, we propose a simple method for direct synthesis of a Si@SiC composite derived from a SiO@C precursor via a Mg thermal reduction method as an anode material for Li-ion batteries. Owing to the extremely high exothermic reaction between SiO and Mg, along with the presence of carbon, SiC can be spontaneously produced with the formation of Si. The synthesized Si@SiC was composed of well-mixed SiC and Si nanocrystallites. The SiC content of the Si@SiC was adjusted by tuning the carbon content of the precursor. Among the resultant Si@SiC materials, the Si@SiC-0.5 sample, which was produced from a precursor containing 4.37 wt % of carbon, exhibits excellent electrochemical characteristics, such as a high first discharge capacity of 1642 mAh g and 53.9% capacity retention following 200 cycles at a rate of 0.1C. Even at a high rate of 10C, a high reversible capacity of 454 mAh g was obtained. Surprisingly, at a fixed discharge rate of C/20, the Si@SiC-0.5 electrode delivered a high capacity of 989 mAh g at a charge rate of 20C. In addition, a full cell fabricated by coupling a lithiated Si@SiC-0.5 anode and a LiCoO cathode exhibits excellent cyclability over 50 cycles. This outstanding electrochemical performance of Si@SiC-0.5 is attributed to the SiC phase, which acts as a buffer layer that stabilizes the nanostructure of the Si active phase and enhances the electrical conductivity of the electrode.

摘要

在这里,我们提出了一种简单的方法,通过 Mg 热还原法从 SiO@C 前体直接合成 Si@SiC 复合材料,用作锂离子电池的阳极材料。由于 SiO 和 Mg 之间的极高放热反应以及碳的存在,SiC 可以在 Si 的形成过程中自发产生。合成的 Si@SiC 由 SiC 和 Si 纳米晶的混合组成。通过调整前驱体中的碳含量来调整 Si@SiC 的 SiC 含量。在所得到的 Si@SiC 材料中,由含有 4.37wt%碳的前驱体制备的 Si@SiC-0.5 样品表现出优异的电化学性能,例如首次放电容量高达 1642 mAh g,在 0.1C 倍率下循环 200 次后容量保持率为 53.9%。即使在 10C 的高倍率下,仍可获得 454 mAh g 的高可逆容量。令人惊讶的是,在固定的 C/20 放电速率下,Si@SiC-0.5 电极在 20C 的充电速率下可提供高达 989 mAh g 的高容量。此外,由 lithiated Si@SiC-0.5 阳极和 LiCoO 阴极耦合制成的全电池在 50 次循环中表现出优异的循环稳定性。Si@SiC-0.5 的这种出色的电化学性能归因于 SiC 相,它作为缓冲层稳定了 Si 活性相的纳米结构并提高了电极的导电性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验