Calvopiña Karina, Hinchliffe Philip, Brem Jürgen, Heesom Kate J, Johnson Samar, Cain Ricky, Lohans Christopher T, Fishwick Colin W G, Schofield Christopher J, Spencer James, Avison Matthew B
School of Cellular & Molecular Medicine, University of Bristol, Bristol, UK.
Department of Chemistry, University of Oxford, Oxford, UK.
Mol Microbiol. 2017 Nov;106(3):492-504. doi: 10.1111/mmi.13831. Epub 2017 Sep 21.
Clavulanic acid and avibactam are clinically deployed serine β-lactamase inhibitors, important as a defence against antibacterial resistance. Bicyclic boronates are recently discovered inhibitors of serine and some metallo β-lactamases. Here, we show that avibactam and a bicyclic boronate inhibit L2 (serine β-lactamase) but not L1 (metallo β-lactamase) from the extensively drug resistant human pathogen Stenotrophomonas maltophilia. X-ray crystallography revealed that both inhibitors bind L2 by covalent attachment to the nucleophilic serine. Both inhibitors reverse ceftazidime resistance in S. maltophilia because, unlike clavulanic acid, they do not induce L1 production. Ceftazidime/inhibitor resistant mutants hyperproduce L1, but retain aztreonam/inhibitor susceptibility because aztreonam is not an L1 substrate. Importantly, avibactam, but not the bicyclic boronate is deactivated by L1 at a low rate; the utility of avibactam might be compromised by mutations that increase this deactivation rate. These data rationalize the observed clinical efficacy of ceftazidime/avibactam plus aztreonam as combination therapy for S. maltophilia infections and confirm that aztreonam-like β-lactams plus nonclassical β-lactamase inhibitors, particularly avibactam-like and bicyclic boronate compounds, have potential for treating infections caused by this most intractable of drug resistant pathogens.
克拉维酸和阿维巴坦是临床上使用的丝氨酸β-内酰胺酶抑制剂,对于抵御细菌耐药性至关重要。双环硼酸酯是最近发现的丝氨酸和一些金属β-内酰胺酶抑制剂。在此,我们表明阿维巴坦和一种双环硼酸酯可抑制广泛耐药的人类病原体嗜麦芽窄食单胞菌的L2(丝氨酸β-内酰胺酶),但不能抑制L1(金属β-内酰胺酶)。X射线晶体学显示,这两种抑制剂均通过与亲核丝氨酸共价结合来结合L2。这两种抑制剂均可逆转嗜麦芽窄食单胞菌对头孢他啶的耐药性,因为与克拉维酸不同,它们不会诱导L1的产生。头孢他啶/抑制剂耐药突变体过度产生L1,但对氨曲南/抑制剂仍敏感,因为氨曲南不是L1的底物。重要的是,阿维巴坦而非双环硼酸酯会被L1以较低速率失活;增加这种失活速率的突变可能会损害阿维巴坦的效用。这些数据解释了观察到的头孢他啶/阿维巴坦联合氨曲南作为嗜麦芽窄食单胞菌感染联合治疗的临床疗效,并证实氨曲南样β-内酰胺类药物加非经典β-内酰胺酶抑制剂,特别是阿维巴坦样和双环硼酸酯化合物,具有治疗由这种最难治疗的耐药病原体引起的感染的潜力。