a Departamento de Biología , Facultad de Química y Biología, Universidad de Santiago de Chile , Santiago , Chile.
b Programa de Biología Celular y Molecular , Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile , Santiago , Chile.
Channels (Austin). 2017 Nov 2;11(6):624-635. doi: 10.1080/19336950.2017.1375072. Epub 2017 Oct 5.
Cerebral ischemia-reperfusion injury triggers a deleterious process ending in neuronal death. This process has two components, a glutamate-dependent and a glutamate-independent mechanism. In the glutamate-independent mechanism, neurons undergo a slow depolarization eventually leading to neuronal death. However, little is known about the molecules that take part in this process. Here we show by using mice cortical neurons in culture and ischemia-reperfusion protocols that TRPM4 is fundamental for the glutamate-independent neuronal damage. Thus, by blocking excitotoxicity, we reveal a slow activating, glibenclamide- and 9-phenanthrol-sensitive current, which is activated within 5 min upon ischemia-reperfusion onset. TRPM4 shRNA-based silenced neurons show a reduced ischemia-reperfusion induced current and depolarization. Neurons were protected from neuronal death up to 3 hours after the ischemia-reperfusion challenge. The activation of TRPM4 during ischemia-reperfusion injury involves the increase in both, intracellular calcium and HO, which may act together to produce a sustained activation of the channel.
脑缺血再灌注损伤引发有害过程,导致神经元死亡。该过程有两个组成部分,谷氨酸依赖性和谷氨酸非依赖性机制。在谷氨酸非依赖性机制中,神经元经历缓慢去极化,最终导致神经元死亡。然而,对于参与该过程的分子知之甚少。在这里,我们通过使用培养的皮层神经元和缺血再灌注方案显示,TRPM4 是谷氨酸非依赖性神经元损伤的基础。因此,通过阻断兴奋性毒性,我们揭示了一种缓慢激活的、格列本脲和 9-菲咯啉敏感的电流,它在缺血再灌注开始后 5 分钟内被激活。基于 TRPM4 shRNA 的沉默神经元显示出缺血再灌注诱导电流和去极化减少。神经元在缺血再灌注后 3 小时内受到保护,免受神经元死亡的影响。在缺血再灌注损伤期间,TRPM4 的激活涉及细胞内钙和 HO 的增加,它们可能共同作用,产生通道的持续激活。