Suppr超能文献

化学和缺氧诱导的缺血再灌注激活 TRPM4 触发神经元死亡。

TRPM4 activation by chemically- and oxygen deprivation-induced ischemia and reperfusion triggers neuronal death.

机构信息

a Departamento de Biología , Facultad de Química y Biología, Universidad de Santiago de Chile , Santiago , Chile.

b Programa de Biología Celular y Molecular , Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile , Santiago , Chile.

出版信息

Channels (Austin). 2017 Nov 2;11(6):624-635. doi: 10.1080/19336950.2017.1375072. Epub 2017 Oct 5.

Abstract

Cerebral ischemia-reperfusion injury triggers a deleterious process ending in neuronal death. This process has two components, a glutamate-dependent and a glutamate-independent mechanism. In the glutamate-independent mechanism, neurons undergo a slow depolarization eventually leading to neuronal death. However, little is known about the molecules that take part in this process. Here we show by using mice cortical neurons in culture and ischemia-reperfusion protocols that TRPM4 is fundamental for the glutamate-independent neuronal damage. Thus, by blocking excitotoxicity, we reveal a slow activating, glibenclamide- and 9-phenanthrol-sensitive current, which is activated within 5 min upon ischemia-reperfusion onset. TRPM4 shRNA-based silenced neurons show a reduced ischemia-reperfusion induced current and depolarization. Neurons were protected from neuronal death up to 3 hours after the ischemia-reperfusion challenge. The activation of TRPM4 during ischemia-reperfusion injury involves the increase in both, intracellular calcium and HO, which may act together to produce a sustained activation of the channel.

摘要

脑缺血再灌注损伤引发有害过程,导致神经元死亡。该过程有两个组成部分,谷氨酸依赖性和谷氨酸非依赖性机制。在谷氨酸非依赖性机制中,神经元经历缓慢去极化,最终导致神经元死亡。然而,对于参与该过程的分子知之甚少。在这里,我们通过使用培养的皮层神经元和缺血再灌注方案显示,TRPM4 是谷氨酸非依赖性神经元损伤的基础。因此,通过阻断兴奋性毒性,我们揭示了一种缓慢激活的、格列本脲和 9-菲咯啉敏感的电流,它在缺血再灌注开始后 5 分钟内被激活。基于 TRPM4 shRNA 的沉默神经元显示出缺血再灌注诱导电流和去极化减少。神经元在缺血再灌注后 3 小时内受到保护,免受神经元死亡的影响。在缺血再灌注损伤期间,TRPM4 的激活涉及细胞内钙和 HO 的增加,它们可能共同作用,产生通道的持续激活。

相似文献

1
TRPM4 activation by chemically- and oxygen deprivation-induced ischemia and reperfusion triggers neuronal death.
Channels (Austin). 2017 Nov 2;11(6):624-635. doi: 10.1080/19336950.2017.1375072. Epub 2017 Oct 5.
2
MicroRNA-424 protects against focal cerebral ischemia and reperfusion injury in mice by suppressing oxidative stress.
Stroke. 2015 Feb;46(2):513-9. doi: 10.1161/STROKEAHA.114.007482. Epub 2014 Dec 18.
3
Cofilin Inhibition Restores Neuronal Cell Death in Oxygen-Glucose Deprivation Model of Ischemia.
Mol Neurobiol. 2016 Mar;53(2):867-878. doi: 10.1007/s12035-014-9056-3. Epub 2014 Dec 20.
5
Cerebral ischemia-reperfusion-induced autophagy protects against neuronal injury by mitochondrial clearance.
Autophagy. 2013 Sep;9(9):1321-33. doi: 10.4161/auto.25132. Epub 2013 Jun 12.
6
TrkA pathway(s) is involved in regulation of TRPM7 expression in hippocampal neurons subjected to ischemic-reperfusion and oxygen-glucose deprivation.
Brain Res Bull. 2008 May 15;76(1-2):124-30. doi: 10.1016/j.brainresbull.2008.01.013. Epub 2008 Feb 12.
7
Neuroprotective effects of sulfiredoxin-1 during cerebral ischemia/reperfusion oxidative stress injury in rats.
Brain Res Bull. 2017 Jun;132:99-108. doi: 10.1016/j.brainresbull.2017.05.012. Epub 2017 May 24.
8
Bicyclol attenuates oxidative stress and neuronal damage following transient forebrain ischemia in mouse cortex and hippocampus.
Neurosci Lett. 2009 Aug 7;459(2):84-7. doi: 10.1016/j.neulet.2009.05.002. Epub 2009 May 7.
9
Protective Effects of Duloxetine against Cerebral Ischemia-Reperfusion Injury via Transient Receptor Potential Melastatin 2 Inhibition.
J Pharmacol Exp Ther. 2019 Feb;368(2):246-254. doi: 10.1124/jpet.118.253922. Epub 2018 Dec 6.
10
Folic acid deficiency increases brain cell injury via autophagy enhancement after focal cerebral ischemia.
J Nutr Biochem. 2016 Dec;38:41-49. doi: 10.1016/j.jnutbio.2016.08.009. Epub 2016 Sep 7.

引用本文的文献

1
Protective effect of antidiabetic drugs against male infertility: evidence from Mendelian randomization.
Diabetol Metab Syndr. 2025 Apr 28;17(1):140. doi: 10.1186/s13098-025-01700-0.
3
TRP Channels in Excitotoxicity.
Neuroscientist. 2025 Feb;31(1):80-97. doi: 10.1177/10738584241246530. Epub 2024 Apr 29.
7
TRPM4 Expression During Postnatal Developmental of Mouse CA1 Pyramidal Neurons.
Front Neuroanat. 2021 Apr 28;15:643287. doi: 10.3389/fnana.2021.643287. eCollection 2021.
8
TRP Channels Regulation of Rho GTPases in Brain Context and Diseases.
Front Cell Dev Biol. 2020 Nov 10;8:582975. doi: 10.3389/fcell.2020.582975. eCollection 2020.
9
TRPM4 and the Emperor.
Channels (Austin). 2018 Jan 1;12(1):174-175. doi: 10.1080/19336950.2017.1398967.

本文引用的文献

1
Metabotropic NMDA receptor signaling couples Src family kinases to pannexin-1 during excitotoxicity.
Nat Neurosci. 2016 Mar;19(3):432-42. doi: 10.1038/nn.4236. Epub 2016 Feb 8.
2
TRPM4 Is a Novel Component of the Adhesome Required for Focal Adhesion Disassembly, Migration and Contractility.
PLoS One. 2015 Jun 25;10(6):e0130540. doi: 10.1371/journal.pone.0130540. eCollection 2015.
3
Permeation, regulation and control of expression of TRP channels by trace metal ions.
Pflugers Arch. 2015 Jun;467(6):1143-64. doi: 10.1007/s00424-014-1590-3. Epub 2014 Aug 10.
4
Modulation of NMDAR subunit expression by TRPM2 channels regulates neuronal vulnerability to ischemic cell death.
J Neurosci. 2013 Oct 30;33(44):17264-77. doi: 10.1523/JNEUROSCI.1729-13.2013.
5
9-Phenanthrol, a TRPM4 inhibitor, protects isolated rat hearts from ischemia-reperfusion injury.
PLoS One. 2013 Jul 25;8(7):e70587. doi: 10.1371/journal.pone.0070587. Print 2013.
6
Characterizing the conductance underlying depolarization-induced slow current in cerebellar Purkinje cells.
J Neurophysiol. 2013 Feb;109(4):1174-81. doi: 10.1152/jn.01168.2011. Epub 2012 Nov 28.
9
Reperfusion brain injury: focus on cellular bioenergetics.
Neurology. 2012 Sep 25;79(13 Suppl 1):S44-51. doi: 10.1212/WNL.0b013e3182695a14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验