COMP Centre of Excellence, Department of Applied Physics, Aalto University , P.O. Box 11000, FI-00076 Aalto, Espoo, Finland.
Departamento de Física, Universidade Federal do Rio Grande do Norte , Natal, RN, 59078-900, Brazil.
Nano Lett. 2017 Oct 11;17(10):5919-5924. doi: 10.1021/acs.nanolett.7b01742. Epub 2017 Sep 12.
Grain boundaries in graphene are inherent in wafer-scale samples prepared by chemical vapor deposition. They can strongly influence the mechanical properties and electronic and heat transport in graphene. In this work, we employ extensive molecular dynamics simulations to study thermal transport in large suspended polycrystalline graphene samples. Samples of different controlled grain sizes are prepared by a recently developed efficient multiscale approach based on the phase field crystal model. In contrast to previous works, our results show that the scaling of the thermal conductivity with the grain size implies bimodal behavior with two effective Kapitza lengths. The scaling is dominated by the out-of-plane (flexural) phonons with a Kapitza length that is an order of magnitude larger than that of the in-plane phonons. We also show that, to get quantitative agreement with the most recent experiments, quantum corrections need to be applied to both the Kapitza conductance of grain boundaries and the thermal conductivity of pristine graphene, and the corresponding Kapitza lengths must be renormalized accordingly.
石墨烯中的晶界是在化学气相沉积制备的晶圆级样品中固有的。它们会强烈影响石墨烯的机械性能以及电子和热传输性能。在这项工作中,我们采用了广泛的分子动力学模拟来研究大尺寸悬浮多晶石墨烯样品中的热传输性能。通过最近开发的基于相场晶体模型的高效多尺度方法来制备具有不同控制晶粒尺寸的样品。与之前的工作不同,我们的结果表明,热导率随晶粒尺寸的标度表明具有双模态行为和两个有效 Kapitza 长度。这种标度主要由面外(弯曲)声子主导,Kapitza 长度比面内声子大一个数量级。我们还表明,为了与最近的实验取得定量一致,需要对晶界的 Kapitza 电导率和原始石墨烯的热导率进行量子修正,并且相应的 Kapitza 长度也需要相应地进行重整化。