UCL Institute of Ophthalmology, University College London, London WC1E 6BT, UK.
UCL Institute of Neurology, University College London, London WC1E 6BT, UK.
Cell Rep. 2017 Sep 5;20(10):2513-2524. doi: 10.1016/j.celrep.2017.08.047.
Research in neuroscience increasingly relies on the mouse, a mammalian species that affords unparalleled genetic tractability and brain atlases. Here, we introduce high-yield methods for probing mouse visual decisions. Mice are head-fixed, facilitating repeatable visual stimulation, eye tracking, and brain access. They turn a steering wheel to make two alternative choices, forced or unforced. Learning is rapid thanks to intuitive coupling of stimuli to wheel position. The mouse decisions deliver high-quality psychometric curves for detection and discrimination and conform to the predictions of a simple probabilistic observer model. The task is readily paired with two-photon imaging of cortical activity. Optogenetic inactivation reveals that the task requires mice to use their visual cortex. Mice are motivated to perform the task by fluid reward or optogenetic stimulation of dopamine neurons. This stimulation elicits a larger number of trials and faster learning. These methods provide a platform to accurately probe mouse vision and its neural basis.
神经科学研究越来越依赖于老鼠,这是一种哺乳动物,具有无与伦比的遗传可控性和大脑图谱。在这里,我们介绍了探测老鼠视觉决策的高效方法。老鼠被固定在头部,便于进行可重复的视觉刺激、眼动追踪和大脑访问。它们转动方向盘来做出两个替代选择,强制或非强制。由于刺激与车轮位置的直观耦合,学习过程迅速。老鼠的决策提供了高质量的检测和辨别心理物理曲线,并符合简单概率观测器模型的预测。该任务可以轻松地与皮质活动的双光子成像相结合。光遗传学失活表明,该任务要求老鼠使用其视觉皮层。通过液体奖励或多巴胺神经元的光遗传学刺激来激发老鼠执行任务的动机,这会产生更多的试验和更快的学习。这些方法为准确探测老鼠的视觉及其神经基础提供了一个平台。