Suppr超能文献

使用神经网络估计器的认知模型的潜在变量序列识别

Latent variable sequence identification for cognitive models with neural network estimators.

作者信息

Pan Ti-Fen, Li Jing-Jing, Thompson Bill, Ge Collins Anne

机构信息

Department of Psychology, University of California, Berkeley, USA.

Helen Wills Neuroscience Institute, University of California, Berkeley, USA.

出版信息

Behav Res Methods. 2025 Aug 28;57(10):272. doi: 10.3758/s13428-025-02794-0.

Abstract

Extracting time-varying latent variables from computational cognitive models plays a key role in uncovering the dynamic cognitive processes that drive behaviors. However, existing methods are limited to inferring latent variable sequences in a relatively narrow class of cognitive models. For example, a broad class of relevant cognitive models with intractable likelihood is currently out of reach of standard techniques, based on maximum a posteriori parameter estimation. Here, we present a simulation-based approach that leverages recurrent neural networks to map experimental data directly to the targeted latent variable space. We first show in simulations that our approach achieves competitive performance in inferring latent variable sequences in both likelihood-tractable and intractable models. We then demonstrate its applicability in real world datasets. Furthermore, the approach is practical to standard-size, individual data, generalizable across different computational models, and adaptable for continuous and discrete latent spaces. Our work underscores that combining recurrent neural networks and simulated data to identify model latent variable sequences broadens the scope of cognitive models researchers can explore, enabling testing a wider range of theories.

摘要

从计算认知模型中提取时变潜在变量在揭示驱动行为的动态认知过程中起着关键作用。然而,现有方法仅限于在相对狭窄的一类认知模型中推断潜在变量序列。例如,目前基于最大后验参数估计的标准技术无法处理一类广泛的具有难以处理的似然性的相关认知模型。在此,我们提出一种基于模拟的方法,该方法利用循环神经网络将实验数据直接映射到目标潜在变量空间。我们首先在模拟中表明,我们的方法在推断似然性可处理和不可处理模型中的潜在变量序列方面都取得了有竞争力的性能。然后,我们展示了它在真实世界数据集上的适用性。此外,该方法对于标准规模的个体数据是实用的,可在不同的计算模型之间推广,并且适用于连续和离散的潜在空间。我们的工作强调,将循环神经网络和模拟数据相结合以识别模型潜在变量序列拓宽了认知模型研究人员可以探索的范围,从而能够检验更广泛的理论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5eed/12394392/e2cd21aa5471/13428_2025_2794_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验