Suppr超能文献

快速高斯朴素贝叶斯在搜索光分类分析中的应用。

Fast Gaussian Naïve Bayes for searchlight classification analysis.

机构信息

Department of NeuroInformatics, Cuban Center for Neuroscience, Cuba.

Department of NeuroInformatics, Cuban Center for Neuroscience, Cuba; Department of Cognitive Neuroscience, Maastricht University, Netherlands.

出版信息

Neuroimage. 2017 Dec;163:471-479. doi: 10.1016/j.neuroimage.2017.09.001. Epub 2017 Sep 4.

Abstract

The searchlight technique is a variant of multivariate pattern analysis (MVPA) that examines neural activity across large sets of small regions, exhaustively covering the whole brain. This usually involves application of classifier algorithms across all searchlights, which entails large computational costs especially when testing the statistical significance of the accuracies with permutation methods. In this article, a new implementation of the Gaussian Naive Bayes classifier is presented (henceforth massive-GNB). This approach allows classification in all searchlights simultaneously, and is faster than previously published searchlight GNB implementations, as well as other more complex classifiers including support vector machines (SVM). To ensure that the gain in speed for GNB would be useful in searchlight analysis, we compared the accuracies of massive-GNB and SVM in detecting the lateral occipital complex (LOC) in an fMRI localizer experiment (26 subjects). Moreover, this region as defined in a meta-analysis of many activation studies was used as a gold standard to compare error rates for both classifiers. In individual searchlights, SVM was somewhat more accurate than massive-GNB and more selective in detecting the meta-analytic LOC. However, with multiple comparison correction at the cluster-level the two classifiers performed equivalently. Thus for cluster-level analysis, massive-GNB produces an accuracy similar to more sophisticated classifiers but with a substantial gain in speed. Massive-GNB (available as a public Matlab toolbox) could facilitate the more widespread use of searchlight analysis.

摘要

搜索光技术是一种多元模式分析(MVPA)的变体,它检查了大量小区域的神经活动,全面覆盖了整个大脑。这通常涉及到在所有搜索光中应用分类器算法,这需要大量的计算成本,特别是当使用置换方法测试准确性的统计显著性时。在本文中,提出了一种新的高斯朴素贝叶斯分类器实现(以下简称海量-GNB)。这种方法允许在所有搜索光中同时进行分类,并且比以前发布的搜索光 GNB 实现以及其他更复杂的分类器(包括支持向量机(SVM))更快。为了确保 GNB 的速度优势在搜索光分析中有用,我们比较了海量-GNB 和 SVM 在 fMRI 定位器实验(26 个被试)中检测外侧枕叶复合体(LOC)的准确性。此外,该区域在许多激活研究的荟萃分析中被定义为金标准,用于比较两种分类器的错误率。在个体搜索光中,SVM 比海量-GNB 更准确,并且在检测元分析 LOC 方面更具选择性。然而,在集群水平上进行多重比较校正后,这两种分类器的性能相当。因此,对于集群水平的分析,海量-GNB 产生的准确性与更复杂的分类器相似,但速度有了显著提高。海量-GNB(作为公共 Matlab 工具箱提供)可以促进搜索光分析的更广泛应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验