Suppr超能文献

肠道菌群与炎症性肠病:因果关系及预测模型

Intestinal flora and inflammatory bowel disease: Causal relationships and predictive models.

作者信息

Bi Guan-Wei, Wu Zhen-Guo, Li Yu, Wang Jin-Bei, Yao Zhi-Wen, Yang Xiao-Yun, Yu Yan-Bo

机构信息

First Clinical College, Shandong University, Jinan, Shandong Province, PR China.

Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, PR China.

出版信息

Heliyon. 2024 Sep 20;10(18):e38101. doi: 10.1016/j.heliyon.2024.e38101. eCollection 2024 Sep 30.

Abstract

BACKGROUND

Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is significantly influenced by intestinal flora. Understanding the genetic and microbiotic interplay is crucial for IBD prediction and treatment.

METHODS

We used Mendelian randomization (MR), transcriptomic analysis, and machine learning techniques, integrating data from the MiBioGen Consortium and various GWAS datasets. SNPs associated with intestinal flora were mapped to genes, with LASSO regression refining gene selection. Differentially expressed genes (DEGs) and immune infiltration patterns were identified through transcriptomic analysis. Six machine learning models were used for predictive modeling.

FINDINGS

MR analysis identified 25 gut microbiota classifications causally related to IBD. SNP mapping and gene expression analysis highlighted 24 significant genes. Drug target MR and colocalization validated these genes' causal relationships with IBD. Key pathways identified included the PI3K-Akt signaling pathway and epithelial-mesenchymal transition. Immune infiltration analysis revealed distinct patterns between high and low LASSO score groups. Machine learning models demonstrated high predictive value, with soft voting enhancing reliability.

INTERPRETATION

By integrating MR, transcriptomic analysis, and sophisticated machine learning approaches, this study elucidates the causal relationships between intestinal flora and IBD. The application of machine learning not only enhanced predictive modeling but also offered new insights into IBD pathogenesis, highlighted potential therapeutic targets, and established a robust framework for predicting IBD onset.

摘要

背景

炎症性肠病(IBD),包括克罗恩病和溃疡性结肠炎,受肠道菌群的影响很大。了解基因与微生物之间的相互作用对于IBD的预测和治疗至关重要。

方法

我们使用孟德尔随机化(MR)、转录组分析和机器学习技术,整合了来自MiBioGen联盟和各种全基因组关联研究(GWAS)数据集的数据。将与肠道菌群相关的单核苷酸多态性(SNP)定位到基因,通过套索回归优化基因选择。通过转录组分析确定差异表达基因(DEG)和免疫浸润模式。使用六种机器学习模型进行预测建模。

结果

MR分析确定了25种与IBD有因果关系的肠道微生物分类。SNP定位和基因表达分析突出了24个重要基因。药物靶点MR和共定位验证了这些基因与IBD的因果关系。确定的关键途径包括PI3K-Akt信号通路和上皮-间质转化。免疫浸润分析揭示了高套索评分组和低套索评分组之间的不同模式。机器学习模型显示出较高的预测价值,软投票提高了可靠性。

解读

通过整合MR、转录组分析和复杂的机器学习方法,本研究阐明了肠道菌群与IBD之间的因果关系。机器学习的应用不仅增强了预测建模,还为IBD发病机制提供了新见解,突出了潜在的治疗靶点,并建立了一个强大的预测IBD发病的框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7401/11458943/718a8ca33a53/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验